8 research outputs found

    MOESM1 of Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation history

    No full text
    Additional file 1: Figure S1. Schematic cross section of the sealed liquid cell in the JEOL ARM microscope under high-dose rate. Figure S2. Anisotropic nanostructures formed after 2 min observation in pristine area. Two python programs that model DLA growth, in classical DLA conditions (namely, DLA_sticking.py) and in homogenous concentration conditions (namely, DLA_sticking_homogen_nucl.py)

    Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy

    No full text
    The shape-dependent properties of gold nanostars (NSs) have motivated massive research efforts in the field of colloidal chemistry to gain a better control over the morphology of these promising nanostructures. Nevertheless, this challenge requires a better understanding of the atomic-scale processes leading to the formation of stellated nanoparticles. We hereby report an unprecedented in situ study focused on the seed-mediated synthesis of symmetric gold NSs performed by radiolysis in methanol. We take advantage of the spatial and temporal resolutions of liquid-cell transmission electron microscopy to unravel the key effects of the growth speed, seed-crystal morphology, and dimethylamine functionalization on the formation mechanisms, shape, and stability of NSs enclosed by high-index facets. Surprisingly, the stellation processes transforming icosahedral nanoparticles into NSs with 20 sharp arms entails a continuous restructuring of NS facets driven by surface diffusion, which provide a fresh look at faceting mechanisms

    Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway

    No full text
    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous <i>in vitro</i> studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the <i>in situ</i> monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX<sub>2</sub> complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs

    Atomic-Scale Faceting in CoPt Nanoparticles Epitaxially Grown on NaCl

    No full text
    Sub-10 nm CoPt nanoparticles were slowly grown at 400 °C in epitaxy on a NaCl substrate. Their faceted shape was analyzed using state-of-the-art TEM techniques: aberration-corrected imaging, electron tomography, and probe-aberration-corrected scanning transmission electron microscopy. These nanoparticles consist in truncated octahedrons with a chemically disordered face-centered cubic (FCC) structure. We evidenced slight variations of the truncation of these nano-octahedrons depending on their size: the largest particles are less truncated than the smallest particles. We also highlighted the up–down symmetry of the NPs, suggesting that the adhesion energy of FCC-CoPt on NaCl is negligible. Energy descriptions of these NPs were made by using quenched molecular dynamics in the framework of the second moment approximation of the tight-binding formalism, while taking into account the random distribution of Co and Pt atoms. In a general manner, this original energy approach for studying faceting in chemically disordered nanoalloys is consistent with experimental results, particularly for small-size clusters. However, as the experimentally observed size-effect on the NPs truncation was not theoretically predicted, this phenomenon could originate from kinetic effects inherent to nanocrystal growth

    Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopy

    No full text
    The growth of colloidal nanoparticles is simultaneously driven by kinetic and thermodynamic effects that are difficult to distinguish. We have exploited in situ scanning transmission electron microscopy in liquid to study the growth of Au nanoplates by radiolysis and unravel the mechanisms influencing their formation and shape. The electron dose provides a straightforward control of the growth rate that allows quantifying the kinetic effects on the planar nanoparticles formation. Indeed, we demonstrate that the surface-reaction rate per unit area has the same dose-rate dependent behavior than the concentration of reducing agents in the liquid cell. Interestingly, we also determine a critical supply rate of gold monomers for nanoparticle faceting, corresponding to three layers per second, above which the formation of nanoplates is not possible because the growth is then dominated by kinetic effects. At lower electron dose, the growth is driven by thermodynamic and the formation and shape of nanoplates are directly related to the twin-planes formed during the growth

    Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents

    No full text
    In the pursuit of optimized magnetic nanostructures for diagnostic and therapeutic applications, the role of nanoparticle architecture has been poorly investigated. In this study, we demonstrate that the internal collective organization of multi-core iron oxide nanoparticles can modulate their magnetic properties in such a way as to critically enhance their hyperthermic efficiency and their MRI <i>T</i><sub>1</sub> and <i>T</i><sub>2</sub> contrast effect. Multi-core nanoparticles composed of maghemite cores were synthesized through a polyol approach, and subsequent electrostatic colloidal sorting was used to fractionate the suspensions by size and hence magnetic properties. We obtained stable suspensions of citrate-stabilized nanostructures ranging from single-core 10 nm nanoparticles to multi-core magnetically cooperative 30 nm nanoparticles. Three-dimensional oriented attachment of primary cores results in enhanced magnetic susceptibility and decreased surface disorder compared to individual cores, while preserving a superparamagnetic-like behavior of the multi-core structures and potentiating thermal losses. Exchange coupling in the multi-core nanoparticles modifies the dynamics of the magnetic moment in such a way that <i>both</i> the longitudinal and transverse NMR relaxivities are also enhanced. Long-term MRI detection of tumor cells and their efficient destruction by magnetic hyperthermia can be achieved thanks to a facile and nontoxic cell uptake of these iron oxide nanostructures. This study proves for the first time that cooperative magnetic behavior within highly crystalline iron oxide superparamagnetic multi-core nanoparticles can improve simultaneously therapeutic and diagnosis effectiveness over existing nanostructures, while preserving biocompatibility

    Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia

    No full text
    Magnetic nanoparticles exhibit a high potential to selectively treat cancer by hyperthermia provided that high heating capacity can be reached. In this work, we report an efficient synthesis of novel structures of magnetic iron oxide. The particles, obtained by applying a modified “polyol” protocol, present a particular shape: they look constituted of smaller grains of approximately 11 nm, assembled in a flower-shaped structure. These nanoflowers, dispersed in water at physiological pH, present particularly interesting magnetic properties and a great capacity of heating. The value of the specific loss power (SLP) of these nanoflowers is 1 order of magnitude higher than the SLP reported for conventional 11 nm single-domain maghemite nanoparticles in the same condition of field exposure
    corecore