15 research outputs found
Review of Langmuir-Wave-Caused Dips and Charge-Exchange-Caused Dips in Spectral Lines from Plasmas and their Applications
We review studies of two kinds of dips in spectral line profiles emitted by plasmas—dips that have been predicted theoretically and observed experimentally: Langmuir-wave-caused dips (L-dips) and charge-exchange-caused dips (X-dips). There is a principal difference with respect to positions of L-dips and X-dips relative to the unperturbed wavelength of a spectral line: positions of L-dips scale with the electron density Ne roughly as Ne1/2, while positions of X-dips are almost independent of Ne (the dependence is much weaker than for L-dips). L-dips and X-dips phenomena are important, both fundamentally and practically. The fundamental importance is due to a rich physics behind each of these phenomena. L-dips are a multi-frequency resonance phenomenon caused by a single-frequency (monochromatic) electric field. X-dips are due to charge exchange at anticrossings of terms of a diatomic quasi-molecule, whose nuclei have different charges. As for important practical applications, they are as follows: observations of L-dips constitute a very accurate method to measure the electron density in plasmas—a method that does not require knowledge of the electron temperature. L-dips also allow measuring the amplitude of the electric field of Langmuir waves—the only spectroscopic method available for this purpose. Observations of X-dips provide an opportunity to determine rate coefficient of charge exchange between multi-charged ions. This is an important reference data, virtually inaccessible by other experimental methods. The rate coefficients of charge exchange are important for magnetic fusion in Tokamaks, for population inversion in the soft x-ray and VUV ranges, for ion storage devices, as well as for astrophysics (e.g., for the solar plasma and for determining the physical state of planetary nebulae)
X-ray Spectroscopy Based Diagnostic of GigaGauss Magnetic Fields during Relativistic Laser-Plasma Interactions
GigaGauss (GG), and even multi-GG magnetic fields are expected to be developed during relativistic laser-plasma interactions. Sub-GG magnetic fields were previously measured by a method using the self-generated harmonics of the laser frequency, and the fact that the magnetized plasma is birefringent and/or optically active depending on the propagation direction of the electromagnetic wave. In the present short communication, we outline an idea for a method of measuring GG magnetic fields based on the phenomenon of Langmuir-wave-caused dips (L-dips) in X-ray line profiles. The L-dips were observed in several experimental spectroscopic studies of relativistic laser-plasma interactions. Ultrastrong magnetic fields affect the separation of the L-dips from one another, so that this relative shift can be used to measure such fields
Etude des opacités des plasmas denses et chauds
PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF
Imagerie neutronique pour la fusion par confinement inertiel et imagerie optique moléculaire
Les domaines scientifiques, nécessitant l imagerie d objets de petites dimensions (micrométriques voire nanométriques) et peu émissifs, sont de plus en plus nombreux (physique des plasmas, astrophysique, physique des matériaux, biotechnologies, ) et les challenges posés par l étude de ces objets en font un axe de recherche et de développement en constante évolution. Le travail présenté dans ce document a un objectif double : présenter les spécificités de l instrumentation associée à ce domaine de recherche ainsi que les facteurs susceptibles d améliorer la précision des systèmes d imagerie ; présenter les techniques numériques d analyse de données et de reconstruction capables de restituer des résolutions spatiales en adéquation avec les dimensions de l objet étudié. La similitude des algorithmes d analyse de données et de reconstruction appliqués à la fusion par confinement inertielle et à l imagerie moléculaire de fluorescence, deux domaines scientifiques dont les enjeux sont très différents, montre combien l imagerie d objets de petites dimensions est un domaine de recherche à la frontière d un grand nombre de disciplines scientifiquesScientific domains that require imaging of micrometric/nanometric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences ). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains , which goals are quiet different, show how micrometric/nanometric object imaging is a research area at the border of al large number of scientific disciplinesPARIS-BIUSJ-Physique recherche (751052113) / SudocPARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF
A Supersensitive Method for Spectroscopic Diagnostics of Electrostatic Waves in Magnetized Plasmas
For relatively strong magnetic fields, hydrogen atoms can have delocalized bound states of almost macroscopic dimensions. Therefore, such states are characterized by a Giant Electric Dipole Moment (GEDM), thus making them very sensitive to an external electric field. We considered the manifestations of the GEDM states in hydrogen spectral line profiles in the presence of a quasimonochromatic electrostatic wave of a frequency ω in a plasma. We demonstrated that in this situation, hydrogen spectral lines can exhibit quasi-satellites, which are the envelopes of Blochinzew-type satellites. We showed that the distinctive feature of such quasi-satellites is that their peak intensity is located at the same distance from the line center (in the frequency scale) for all hydrogen spectral lines, the distance being significantly greater than the wave frequency ω. At the absence of the GEDM (and for relatively strong electrostatic waves), the maxima of the satellite envelopes would be at different distances from the line center for different hydrogen lines. We demonstrated that this effect would constitute a supersensitive diagnostic method for measuring the amplitude of electrostatic waves in plasmas down to ~10 V/cm or even lower
Method for Measuring the Pseudomomentum of Hydrogen Atoms by the Number of Observable Hydrogen Lines Controlled by the Diamagnetism
Hydrogen atoms, being subjected to a strong magnetic field, exhibit an additional, delocalized potential well at almost a microscopic distance from the nucleus. We studied the influence of the delocalized states of hydrogen atoms on the number of observable hydrogen lines in strongly magnetized plasmas. We show that, for sufficiently large values of the pseudomomentum K (K being the integral of the motion controlling the separation of the center of mass and the relative motions), this effect dominates other factors potentially influencing the number of observable hydrogen lines in strongly magnetized plasmas. We provide examples for plasma parameters relevant to edge plasmas of contemporary and future tokamaks, as well as for DA white dwarfs. We demonstrate that our results open up an avenue for the experimental determination of the pseudomomentum K. This is the first proposed method for the experimental determination of the pseudomomentum—to the best of our knowledge
A Supersensitive Method for Spectroscopic Diagnostics of Electrostatic Waves in Magnetized Plasmas
For relatively strong magnetic fields, hydrogen atoms can have delocalized bound states of almost macroscopic dimensions. Therefore, such states are characterized by a Giant Electric Dipole Moment (GEDM), thus making them very sensitive to an external electric field. We considered the manifestations of the GEDM states in hydrogen spectral line profiles in the presence of a quasimonochromatic electrostatic wave of a frequency ω in a plasma. We demonstrated that in this situation, hydrogen spectral lines can exhibit quasi-satellites, which are the envelopes of Blochinzew-type satellites. We showed that the distinctive feature of such quasi-satellites is that their peak intensity is located at the same distance from the line center (in the frequency scale) for all hydrogen spectral lines, the distance being significantly greater than the wave frequency ω. At the absence of the GEDM (and for relatively strong electrostatic waves), the maxima of the satellite envelopes would be at different distances from the line center for different hydrogen lines. We demonstrated that this effect would constitute a supersensitive diagnostic method for measuring the amplitude of electrostatic waves in plasmas down to ~10 V/cm or even lower
Mini-Review of Intra-Stark X-ray Spectroscopy of Relativistic Laser–Plasma Interactions
Intra-Stark spectroscopy (ISS) is the spectroscopy within the quasi-static Stark profile of a spectral line. The present paper reviews the X-ray ISS-based studies recently advanced for the diagnostics of the relativistic laser–plasma interactions. By improving experiments performed on the Vulcan Petawatt (PW) laser facility at the Rutherford Appleton Laboratory (RAL), the simultaneous production of the Langmuir waves and of the ion acoustic turbulence at the surface of the relativistic critical density gave the first probe by ISS of the parametric decay instability (PDI) predicted by PIC simulations. The reliable reproducibility of the experimental signatures of PDI—i.e., the Langmuir-wave-induced dips—allowed measurements of the fields of the Langmuir and ion acoustic waves. The parallel theoretical study based on a rigorous condition of the dynamic resonance depending on the relative values of the ion acoustic and the Langmuir fields could explain the disappearance of the Langmuir dips as the Langmuir wave field increases. The ISS used for the diagnostic of the PDI process in relativistic laser–plasma interactions has reinforced the reliability of the spectral line shape while allowing for all broadening mechanisms. The results can be used for a better understanding of intense laser–plasma interactions and for laboratory modelling of physical processes in astrophysical objects
Review of recent analytical advances in the spectroscopy of hydrogenic lines in plasmas
Broadening of hydrogenic spectral lines is an important tool in spectroscopic diagnostics of various laboratory and astrophysical plasmas. We review recent analytical advances in three areas. First, we review the analytical solution for the splitting of hydrogenic lines under the combination of a circularly polarized electromagnetic wave with a strong magnetic field. Practical applications of this solution relate to the spectroscopic diagnostic of the electron cyclotron waves and to the relativistic laser–plasma interactions. Second, we review analytical results concerning the Stark–Zeeman broadening of the Lyman-alpha (Ly-alpha) line in plasmas. These results allow for the Stark width of the Ly-alpha π-component to be used for the experimental determination of the ion density or of the root-mean-square field of a low-frequency electrostatic plasma turbulence in the situation where the Zeeman effect dominates over the Stark effects. Third, we review recent analytical advances in the area of the intra-Stark spectroscopy: three different new methods, based on the emergent phenomenon of the Langmuir-wave-caused structures (“L-dips”) in the line profiles, for measuring super-strong magnetic fields of the GigaGauss range developing during relativistic laser–plasma interactions. We also review the rich physics behind the L-dips phenomenon – because there was a confusion in the literature in this regard