10,025 research outputs found

    h-deformation of GL(1|1)

    Full text link
    h-deformation of (graded) Hopf algebra of functions on supergroup GL(1|1) is introduced via a contration of GL_q (1|1). The deformation parameter h is odd (grassmann). Related differential calculus on h-superplane is presented.Comment: latex file, 8 pages, minor change

    Magnetic Stress at the Marginally Stable Orbit: Altered Disk Structure, Radiation, and Black Hole Spin Evolution

    Full text link
    Magnetic connections to the plunging region can exert stresses on the inner edge of an accretion disk around a black hole. We recompute the relativistic corrections to the thin-disk dynamics equations when these stresses take the form of a time-steady torque on the inner edge of the disk. The additional dissipation associated with these stresses is concentrated relatively close outside the marginally stable orbit, scaling as r to the -7/2 at large radius. As a result of these additional stresses: spin-up of the central black hole is retarded; the maximum spin-equilibrium accretion efficiency is 36%, and occurs at a/M=0.94; the disk spectrum is extended toward higher frequencies; line profiles (such as Fe K-alpha) are broadened if the line emissivity scales with local flux; limb-brightening, especially at the higher frequencies, is enhanced; and the returning radiation fraction is substantially increased, up to 58%. This last effect creates possible explanations for both synchronized continuum fluctuations in AGN, and polarization rises shortward of the Lyman edge in quasars. We show that no matter what additional stresses occur, when a/M < 0.36, the second law of black hole dynamics sets an absolute upper bound on the accretion efficiency.Comment: 11 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Quantum Oscillations in the Underdoped Cuprate YBa2Cu4O8

    Full text link
    We report the observation of quantum oscillations in the underdoped cuprate superconductor YBa2Cu4O8 using a tunnel-diode oscillator technique in pulsed magnetic fields up to 85T. There is a clear signal, periodic in inverse field, with frequency 660+/-15T and possible evidence for the presence of two components of slightly different frequency. The quasiparticle mass is m*=3.0+/-0.3m_e. In conjunction with the results of Doiron-Leyraud et al. for YBa2Cu3O6.5, the present measurements suggest that Fermi surface pockets are a general feature of underdoped copper oxide planes and provide information about the doping dependence of the Fermi surface.Comment: Contains revisions addressing referees' comments including a different Fig 1b. 4 pages, 4 figure

    Large-scale multielectrode recording and stimulation of neural activity

    Get PDF
    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions

    Nuclear symmetry energy and its density slope at normal density extracted from global nucleon optical potentials

    Full text link
    Based on the Hugenholtz-Van Hove theorem, it is shown that both the symmetry energy Esym(ρ)_{sym}(\rho) and its density slope L(ρ)L(\rho) at normal density ρ0\rho_0 are completely determined by the global nucleon optical potentials that can be extracted directly from nucleon-nucleus scatterings, (p,n) charge exchange reactions and single-particle energy levels of bound states. Adopting a value of m/m=0.7m^*/m=0.7 for the nucleon effective k-mass in symmetric nuclear matter at ρ0\rho_0 and averaging all phenomenological isovector nucleon potentials constrained by world data available in the literature since 1969, the best estimates of Esym(ρ0)=31.3E_{sym}(\rho_0)=31.3 MeV and L(ρ0)=52.7L(\rho_0)=52.7 MeV are simultaneously obtained. Uncertainties involved in the estimates are discussed.Comment: 4 pages including 2 figure

    Molecular Hydrogen Emission Lines in Far Ultraviolet Spectroscopic Explorer Observations of Mira B

    Full text link
    We present new Far Ultraviolet Spectroscopic Explorer (FUSE) observations of Mira A's wind-accreting companion star, Mira B. We find that the strongest lines in the FUSE spectrum are H2 lines fluoresced by H I Lyman-alpha. A previously analyzed Hubble Space Telescope (HST) spectrum also shows numerous Lyman-alpha fluoresced H2 lines. The HST lines are all Lyman band lines, while the FUSE H2 lines are mostly Werner band lines, many of them never before identified in an astrophysical spectrum. We combine the FUSE and HST data to refine estimates of the physical properties of the emitting H2 gas. We find that the emission can be reproduced by an H2 layer with a temperature and column density of T=3900 K and log N(H2)=17.1, respectively. Another similarity between the HST and FUSE data, besides the prevalence of H2 emission, is the surprising weakness of the continuum and high temperature emission lines, suggesting that accretion onto Mira B has weakened dramatically. The UV fluxes observed by HST on 1999 August 2 were previously reported to be over an order of magnitude lower than those observed by HST and the International Ultraviolet Explorer (IUE) from 1979--1995. Analysis of the FUSE data reveals that Mira B was still in a similarly low state on 2001 November 22.Comment: 23 pages, 6 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; accepted by Ap

    Noncommutative Spheres and Instantons

    Full text link
    We report on some recent work on deformation of spaces, notably deformation of spheres, describing two classes of examples. The first class of examples consists of noncommutative manifolds associated with the so called θ\theta-deformations which were introduced out of a simple analysis in terms of cycles in the (b,B)(b,B)-complex of cyclic homology. These examples have non-trivial global features and can be endowed with a structure of noncommutative manifolds, in terms of a spectral triple (\ca, \ch, D). In particular, noncommutative spheres SθNS^{N}_{\theta} are isospectral deformations of usual spherical geometries. For the corresponding spectral triple (\cinf(S^{N}_\theta), \ch, D), both the Hilbert space of spinors \ch= L^2(S^{N},\cs) and the Dirac operator DD are the usual ones on the commutative NN-dimensional sphere SNS^{N} and only the algebra and its action on ch\ch are deformed. The second class of examples is made of the so called quantum spheres SqNS^{N}_q which are homogeneous spaces of quantum orthogonal and quantum unitary groups. For these spheres, there is a complete description of KK-theory, in terms of nontrivial self-adjoint idempotents (projections) and unitaries, and of the KK-homology, in term of nontrivial Fredholm modules, as well as of the corresponding Chern characters in cyclic homology and cohomology.Comment: Minor changes, list of references expanded and updated. These notes are based on invited lectures given at the ``International Workshop on Quantum Field Theory and Noncommutative Geometry'', November 26-30 2002, Tohoku University, Sendai, Japan. To be published in the workshop proceedings by Springer-Verlag as Lecture Notes in Physic

    Cerenkov radiation and scalar stars

    Full text link
    We explore the possibility that a charged particle moving in the gravitational field generated by a scalar star could radiate energy via a recently proposed gravitational \v{C}erenkov mechanism. We numerically prove that this is not possible for stable boson stars. We also show that soliton stars could have \v{C}erenkov radiation for particular values of the boson mass, although diluteness of the star grows and actual observational possibility decreases for the more usually discussed boson masses. These conclusions diminish, although do not completely rule out, the observational possibility of actually detecting scalar stars using this mechanism, and lead us to consider other forms, like gravitational lensing.Comment: Accepted for publication in Class. Quantum Gra

    Open Cosmic Strings in Black Hole Space-Times

    Get PDF
    We construct open cosmic string solutions in Schwarzschild black hole and non-dilatonic black p-brane backgrounds. These strings can be thought to stretch between two D-branes or between a D-brane and the horizon in curved space-time. We study small fluctuations around these solutions and discuss their basic properties.Comment: 11 pages, REVTex, 5 figures, a reference adde

    K band Spectroscopy of Ultraluminous Infrared Galaxies: The 2 Jy Sample

    Get PDF
    We present near-infrared spectroscopy for a complete sample of 33 ultraluminous infrared galaxies at a resolution of R\approx 1000. Most of the wavelength range from 1.80-2.20 microns in the rest frame is covered, including the Pa-alpha and Br-gamma hydrogen recombination lines, and the molecular hydrogen vibration-rotation 1-0 S(1) and S(3) lines. Other species, such as He I, [Fe II], and [Si VI] appear in the spectra as well, in addition to a number of weaker molecular hydrogen lines. Nuclear extractions for each of the individual galaxies are presented here, along with spectra of secondary nuclei, where available. The Pa-alpha emission is seen to be highly concentrated on the nuclei, typically with very little emision extending beyond a radius of 1 kpc. Signatures of active nuclei are rare in the present sample, occurring in only two of the 33 galaxies. It is found that visual extinctions to the nuclei via the Pa-alpha/Br-gamma line ratio in excess of 10 magnitudes are relatively common among ULIRGs, and that visual extinctions greater than 25 mag are necessary to conceal a QSO emitting half the total bolometric luminosity. The vibration-rotation lines of molecular hydrogen appear to be predominantly thermal in origin, with effective temperatures generally around 2200 K. The relative nuclear velocities between double nucleus ULIRGs are investigated, through which it is inferred that the maximum deprojected velocity difference is about 200 km/s. This figure is lower than the velocities predicted by physical models of strong interactions/mergers of large, gas-rich galaxies.Comment: 52 pages (19 with just figures), 9 figures, accepted for publication in the Astronomical Journal; Table 3 not formatted properly on astro-ph: get source and print Murphy.tab3.p
    corecore