33 research outputs found
Animated molecular dynamics simulations of hydrated caesium-smectite interlayers
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs(+ )formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs(+ )within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs(+ )for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs(+ )and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output
The preservation of a cadaver by a clay sealant: Implications for the disposal of nuclear fuel waste
This report documents a case history in which a cadaver and the associated burial objects were found to be well preserved after being buried for more than 2100 years in Southern China. The preservation is attributed to a layer of kaolin, 0.6 to 3 m thick, that surrounded the coffin system and served as a barrier to water and air movement. The implications for the disposal of nuclear fuel waste are discussed. | This report documents a case history in which a cadaver and associated burial objects were well preserved after being buried for more than 2100 years in Southern China. The preservation is attributed to a layer of kaolin that surrounded the coffin and served as a barrier to water and air movement. The implications for the disposal of nuclear fuel waste are discussed.link_to_subscribed_fulltex
Mobilization of arsenic and other trace elements of health concern in groundwater from the Sali River Basin, Tucuman Province, Argentina
The Salí River Basin in north-west Argentina (7,000 km2) is composed of a sequence of Tertiary and Quaternary loess deposits, which have been substantially reworked by fluvial and aeolian processes. As with other areas of the Chaco-Pampean Plain, groundwater in the basin suffers a range of chemical quality problems, including arsenic (concentrations in the range of 12.2–1,660 μg L−1), fluoride (50–8,740 μg L−1), boron (34.0–9,550 μg L−1), vanadium (30.7–300 μg L−1) and uranium (0.03–125 μg L−1). Shallow groundwater (depths up to 15 m) has particularly high concentrations of these elements. Exceedances above WHO (2011) guideline values are 100% for As, 35% for B, 21% for U and 17% for F. Concentrations in deep (>200 m) and artesian groundwater in the basin are also often high, though less extreme than at shallow depths. The waters are oxidizing, with often high bicarbonate concentrations (50.0–1,260 mg L−1) and pH (6.28–9.24). The ultimate sources of these trace elements are the volcanic components of the loess deposits, although sorption reactions involving secondary Al and Fe oxides also regulate the distribution and mobility of trace elements in the aquifers. In addition, concentrations of chromium lie in range of 79.4–232 μg L−1 in shallow groundwater, 129–250 μg L−1 in deep groundwater and 110–218 μg L−1 in artesian groundwater. All exceed the WHO guideline value of 50 μg L−1. Their origin is likely to be predominantly geogenic, present as chromate in the ambient oxic and alkaline aquifer conditions
Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars
The cultivation of N-efficient oilseed rape cultivars could contribute to a reduction of the large N balance surpluses of this crop. To facilitate the breeding process of N-efficient cultivars, the identification of secondary plant traits correlating with N efficiency is necessary. The objectives of this study were to investigate leaf senescence and N uptake parameters of oilseed rape cultivars and doubled haploid (DH) lines with contrasting N efficiency in a short-term nutrient solution experiment and to relate these results to their performance in field experiments. In the nutrient solution experiment, genotypes differed in leaf senescence of fully expanded leaves and maximum N uptake rate per unit root length under low N supply. A high maximum N uptake rate seemed to have contributed to delayed leaf senescence by enhancing N accumulation in leaves. Also in the field experiments, genotypes differed in leaf senescence after flowering at limiting N supply. Additionally, the most N-efficient DH line was able to adapt leaf photosynthetic capacity to the low-light conditions in the canopy during flowering. N efficiency (grain yield at limiting N supply) was positively correlated with delayed leaf senescence both in nutrient solution and field experiments. It is concluded that important leaf and root traits of N-efficient cultivars are expressed in short-term nutrient solution experiments, which may facilitate the selection of N-efficient cultivars