183 research outputs found

    Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring

    Get PDF
    We construct a zero-curvature Lax connection in a sub-sector of the superstring theory on AdS(4) x CP(3) which is not described by the OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet fermions associated to eight broken supersymmetries of the type IIA background are physical fields. As such, the prescription for the construction of the Lax connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4) does not do the job. So, to construct the Lax connection we have used an alternative method which nevertheless relies on the isometry of the target superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde

    Action for the eleven dimensional multiple M-wave system

    Full text link
    We present the covariant supersymmetric and kappa-symmetric action for a system of N nearly coincident M-waves (multiple M0-brane system) in flat eleven dimensional superspace.Comment: 4+ pages, RevTeX4, no figures. V2: misprints corrected, discussion extended, references added, LaTeX, 10 pages. V3: misprints corrected. V4, extended version, 1+13 pages, to appear in JHE

    Ectoplasm with an Edge

    Full text link
    The construction of supersymmetric invariant actions on a spacetime manifold with a boundary is carried out using the "ectoplasm" formalism for the construction of closed forms in superspace. Non-trivial actions are obtained from the pull-backs to the bosonic bodies of closed but non-exact forms in superspace; finding supersymmetric invariants thus becomes a cohomology problem. For a spacetime with a boundary, the appropriate mathematical language changes to relative cohomology, which we use to give a general formulation of off-shell supersymmetric invariants in the presence of boundaries. We also relate this construction to the superembedding formalism for the construction of brane actions, and we give examples with bulk spacetimes of dimension 3, 4 and 5. The closed superform in the 5D example needs to be constructed as a Chern-Simons type of invariant, obtained from a closed 6-form displaying Weil triviality.Comment: 25 page

    Ten-Dimensional Super-Twistors and Super-Yang-Mills

    Full text link
    Four-dimensional super-twistors provide a compact covariant description of on-shell N=4 d=4 super-Yang-Mills. In this paper, ten-dimensional super-twistors are introduced which similarly provide a compact covariant description of on-shell d=10 super-Yang-Mills. The super-twistor variables are Z=(lambda^alpha, mu_alpha, Gamma^m) where lambda^alpha and mu_alpha are constrained bosonic d=10 spinors and Gamma^m is a constrained fermionic d=10 vector. The Penrose map relates the twistor superfield Phi(Z) with the d=10 super-Yang-Mills vertex operator lambda^alpha A_alpha(x,theta) which appears in the pure spinor formalism of the superstring, and the cubic super-Yang-Mills amplitude is proportional to the super-twistor integral \int dZ Phi_1 Phi_2 Phi_3.Comment: 14 pages harvmac, added short clarificatio

    Pure Spinor Approach to Type IIA Superstring Sigma Models and Free Differential Algebras

    Full text link
    This paper considers the Free Differential Algebra and rheonomic parametrization of type IIA Supergravity, extended to include the BRS differential and the ghosts. We consider not only the ghosts lambda's of supersymmetry but also the ghosts corresponding to gauge and Lorentz transformations. In this way we can derive not only the BRS transformations of fields and ghosts but also the standard pure spinor constraints on lambda's. Moreover the formalism allows to derive the action for the pure spinor formulation of type IIA superstrings in a general background, recovering the action first obtained by Berkovits and Howe.Comment: 1+23 pages, v2: added clarifications and a reference, misprints corrected, v3: presentation improved, results unchange

    Supersymmetric AdS vacua and separation of scales

    Get PDF
    The moduli space of the supersymmetric massive IIA AdS4xS2(B4) vacua, where S2(B4) is a two-sphere bundle over a four-dimensional Kaehler-Einstein base B4, includes three independent parameters which can be thought of as corresponding to the sizes of AdS4, B4 and the S2 fiber. It might therefore be expected that these vacua do not suffer from the absence of scale separation. We show that the independence of the geometric moduli survives flux quantization. However, we uncover an attractor behavior whereby all sizes flow to equality in some neighborhood of spacetime independently of the initial conditions set by the parameters of the solution. This is further confirmed by the study of the ratio of internal to external scalar curvatures. We also show that the asymptotic Kaluza-Klein spectrum of a ten-dimensional massive scalar is governed by a scale of the order of the AdS4 radius. Furthermore we point out that the curvature ratio in supersymmetric IIA AdS4 vacua with rigid SU(3) structure is of order one, indicating the absence of scale separation in this large class of vacua.Comment: 21 pages, 2 figures; v2 typos correcte

    Free Differential Algebras and Pure Spinor Action in IIB Superstring Sigma Models

    Full text link
    In this paper we extend to the case of IIB superstring sigma models the method proposed in hep-th/10023500 to derive the pure spinor approach for type IIA sigma models. In particular, starting from the (Free) Differential Algebra and superspace parametrization of type IIB supergravity, extended to include the BRST differential and all the ghosts, we derive the BRST transformations of fields and ghosts as well as the standard pure spinor constraints for the ghosts λ\lambda related to supersymmetry. Moreover, using the method first proposed by us, we derive the pure spinor action for type IIB superstrings in curved supergravity backgrounds (on shell), in full agreement with the action first obtained by Berkovits and Howe.Comment: 24 page

    Flux compactification on smooth, compact three-dimensional toric varieties

    Full text link
    Three-dimensional smooth, compact toric varieties (SCTV), when viewed as real six-dimensional manifolds, can admit G-structures rendering them suitable for internal manifolds in supersymmetric flux compactifications. We develop techniques which allow us to systematically construct G-structures on SCTV and read off their torsion classes. We illustrate our methods with explicit examples, one of which consists of an infinite class of toric CP^1 bundles. We give a self-contained review of the relevant concepts from toric geometry, in particular the subject of the classification of SCTV in dimensions less or equal to 3. Our results open up the possibility for a systematic construction and study of supersymmetric flux vacua based on SCTV.Comment: 27 pages, 10 figures; v2: references, minor typos & improvement

    The gauge dual of Romans mass

    Full text link
    We deform the recently proposed holographic duality between the ABJM N=6 Chern-Simons-matter theory and type IIA string theory in AdS4xCP3. We add a non-zero Romans mass F_0, whose dual we identify as the sum of the Chern-Simons levels for the two gauge groups. One can naturally identify four different theories, with different amounts of supersymmetry and of flavor symmetry.Comment: 26 pages. v4: Corrected the sign for the probe brane potentia

    Massive type IIA string theory cannot be strongly coupled

    Full text link
    Understanding the strong coupling limit of massive type IIA string theory is a longstanding problem. We argue that perhaps this problem does not exist; namely, there may be no strongly coupled solutions of the massive theory. We show explicitly that massive type IIA string theory can never be strongly coupled in a weakly curved region of space-time. We illustrate our general claim with two classes of massive solutions in AdS4xCP3: one, previously known, with N = 1 supersymmetry, and a new one with N = 2 supersymmetry. Both solutions are dual to d = 3 Chern-Simons-matter theories. In both these massive examples, as the rank N of the gauge group is increased, the dilaton initially increases in the same way as in the corresponding massless case; before it can reach the M-theory regime, however, it enters a second regime, in which the dilaton decreases even as N increases. In the N = 2 case, we find supersymmetry-preserving gauge-invariant monopole operators whose mass is independent of N. This predicts the existence of branes which stay light even when the dilaton decreases. We show that, on the gravity side, these states originate from D2-D0 bound states wrapping the vanishing two-cycle of a conifold singularity that develops at large N.Comment: 43 pages, 5 figures. v2: added reference
    • …
    corecore