5 research outputs found
Caractérisation et complémentarité des facteurs de virulence du parasitoïde Hyposoter didymator (Ichneumonidae)
Les Hyménoptères parasitoïdes ont un développement larvaire s'effectuant au détriment d'un organisme hôte. Pour exploiter au mieux la ressource que représente un hôte arthropode dont la biologie peut présenter certains obstacles tels que la mobilité et le système immunitaire, les parasitoïdes ont développé une diversité modes de vie et de stratégies de virulence. Ce manuscrit replace les parasitoïdes dans leur contexte évolutif afin de mieux comprendre la diversité surprenante de leurs modes de vie. Ces modes de vie conditionnent la nature des interactions dans les systèmes hôte/parasitoïde. Nous verrons comment, par l'utilisation de nombreux facteurs de virulence tel que le venin, les polydnavirus et bien d'autres encore, les parasitoïdes manipulent la physiologie de leur hôte afin de le rendre adéquat à leur propre développement. Ce travail s'est intéressé au modèle endoparasitoïde Hyposoter didymator (Hym., Ichneumonidae). Nous avons ainsi caractérisé les protéines produites dans la glande à venin des femelles et identifié l'ensemble des gènes du polydnavirus associé (HdIV; H. didymator Ichnovirus), grâce à des techniques de protéomique, génomique et transcriptomique. Nous avons également suivi et quantifié les altérations de la physiologie de l'hôte Spodoptera frugiperda au cours du parasitisme et évalué le rôle relatif de différents facteurs dans ces perturbations et dans la réussite parasitaire. Nos résultats ont permis de montrer que seul le fluide du calice contenant HdIV est nécessaire au développement du parasitoïde. En parallèle, nous avons mis à jour une propriété immuno-évasive des œufs d'H. didymator liée à des protéines associées à l'exochorion. L'ensemble de ce travail a permis de dessiner un élégant schéma expliquant la complémentarité spatio-temporelle des facteurs de virulence durant le parasitisme. Finalement, nous avons cherché à mieux comprendre le déterminisme du spectre d'hôte d'H. didymator, ce qui nous a conduit à montrer que les deux stratégies de contournement de la réponse immunitaire (immuno-évasion et infection virale) se révèlent inefficaces chez les hôtes non-permissifs.Parasitic wasps must deal with physiological features of their host such as mobility, an efficient immune system and a variable metabolism. To ensure successful parasitism in a large range of arthropod hosts, parasitoids display a huge diversity of lifestyle and rely in a variety of virulence factors. In this document, we introduce parasitoid lifestyle in an evolutionary context in order to better understand the parasitoid complexity. As the parasitoid lifestyle drives the host/parasitoid interaction outcome, we discuss for all how the virulence factors such as venom, polydnaviruses and many others are used to ensure successful development of the parasitoid. In this study, we focused on the endoparasitoid Hyposoter didymator (Hym., Ichneumonidae) virulence factors. We thus identified venom proteins and the genes from the associated polydnavirus, HdIV using proteomics, genomics and transcriptomics approaches. Studies on the effect of the venom and the calyx fluid containing the polydnavirus HdIV, reveal that only the calyx fluid is necessary for Spodoptera frugiperda host physiological alteration and parasitism success. Futhermore, this work presents the discovery of a local immune-evasive property of the H. didymator egg exochorion. All these data permitted us to design an effective spatio-temporal model of the virulence factor complementarity used by H. didymator during the parasitism time course. Finally, studies on the H. didymator host range reveals the inefficiency of the different virulence factors in non-permissive hosts, opening insights on the host permissiveness molecular mechanisms.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF
Hyposoter didymator uses a combination of passive and active strategies to escape from the Spodoptera frugiperda cellular immune response
An endoparasitic life style is widespread among Hymenoptera, and various different strategies allowing parasitoids to escape from the host encapsulation response have been reported. Species carrying polydnaviruses (PDVs), such as the ichneumonid Hyposoter didymator, generally rely on the viral symbionts to evade host immune responses. In this work, we show that H. didymator eggs can evade encapsulation by the host in the absence of calyx fluid (containing the viral particles), whereas protection of the larvae requires the presence of calyx fluid. This evasion by the eggs depends on proteins associated with the exochorion. This type of local passive strategy has been described for a few species carrying PDVs. Immune evasion by braconid eggs appears to be related to PDVs or proteins synthesized in the oviducts being associated with the egg. We report that in H. didymator, by contrast, proteins already present in the ovarian follicles are responsible for the eggs avoiding encapsulation. Mass spectrometry analysis of the egg surface proteins revealed the presence of host immune-related proteins, including one with similarities with apolipophorin-III, and also the presence of three viral proteins encoded by IVSPERs (Ichnovirus Structural Protein Encoding Regions)
Specificities of ichnoviruses associated with campoplegine wasps: genome, genes and role in host–parasitoid interaction
Ichnoviruses (IVs), unique symbiotic viruses carried by ichneumonid campoplegine wasps, derive from integration of a paleo-ichnovirus into an ancestral wasp genome. The modern ‘genome’ is composed of both regions that are amplified, circularized and encapsidated into viral particles and non-encapsidated viral genomic regions involved in particle morphogenesis. Packaged genomes include multiple circular dsDNAs encoding many genes mostly organized in gene families. Virus particles are assembled in specialized ovarian cells from which they exit into the oviduct lumen; mature virions are injected during oviposition into the insect host. Expression of viral proteins in infected cells correlates with physiological alterations of the host enabling success of parasitism
Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins
Corrigendum to “Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins” [Insect Biochem. Mol. Biol. 43 (2013), 292–307] http://dx.doi.org/10.1016/j.ibmb.2013.07.001(UT:000329772300006)The venom gland is a conserved organ in Hymenoptera that shows adaptations associated with life-style diversification. Few studies have investigated venom components and function in the highly diverse parasitic wasps and all suggest that the venom regulates host physiology. We explored the venom of the endoparasitoid Hyposoter didymator (Campopleginae), a species with an associated polydnavirus produced in the ovarian tissue. We investigated the effects of the H. didymator venom on two physiological traits of the host Spodoptera frugiperda (Noctuidae): encapsulation response and growth rate. We found that H. didymator venom had no significant effect on host cellular immunity or development, suggesting that it does not contribute to parasitism success. The host physiology seemed to be modified essentially by the ovarian fluid containing the symbiotic polydnaviruses. Proteomic analyses indicated that the H. didymator venom gland produces a large variety of proteins, consistent with the classical hymenopteran venom protein signature, including: reprolysin-like, dipeptidyl peptidase IV, hyaluronidase, arginine kinase or allergen proteins. The venom extracts also contained novel proteins, encoded by venom genes conserved in Campopleginae ichneumonids, and proteins with similarities to active molecules identified in other parasitoid species, such as calreticulin, reprolysin, superoxide dismutase and serpin. However, some of these proteins appear to be produced only in small amounts or to not be secreted. Possibly, in Campopleginae carrying polydnaviruses, the host-modifying activities of venom became. redundant following the acquisition of polydnaviruses by the lineage