40 research outputs found

    A Context-Specific Role for Retinoblastoma Protein-Dependent Negative Growth Control in Suppressing Mammary Tumorigenesis

    Get PDF
    The ability to respond to anti-growth signals is critical to maintain tissue homeostasis and loss of this negative growth control safeguard is considered a hallmark of cancer. Negative growth regulation generally occurs during the G0/G1 phase of the cell cycle, yet the redundancy and complexity among components of this regulatory network has made it difficult to discern how negative growth cues protect cells from aberrant proliferation.The retinoblastoma protein (pRB) acts as the final barrier to prevent cells from entering into the cell cycle. By introducing subtle changes in the endogenous mouse Rb1 gene (Rb1(ΔL)), we have previously shown that interactions at the LXCXE binding cleft are necessary for the proper response to anti-growth signals such as DNA damage and TGF-β, with minimal effects on overall development. This disrupts the balance of pro- and anti-growth signals in mammary epithelium of Rb1(ΔL/ΔL) mice. Here we show that Rb1(ΔL/ΔL) mice are more prone to mammary tumors in the Wap-p53(R172H) transgenic background indicating that negative growth regulation is important for tumor suppression in these mice. In contrast, the same defect in anti-growth control has no impact on Neu-induced mammary tumorigenesis.Our work demonstrates that negative growth control by pRB acts as a crucial barrier against oncogenic transformation. Strikingly, our data also reveals that this tumor suppressive effect is context-dependent

    Contribution of CXCL12 secretion to invasion of breast cancer cells

    Get PDF
    INTRODUCTION: Neu (HER2/ErbB2) is overexpressed in 25% to 30% of human breast cancer, correlating with a poor prognosis. Researchers in previous studies who used the mouse mammary tumor virus Neu-transgenic mouse model (MMTV-Neu) demonstrated that the Neu-YB line had increased production of CXCL12 and increased metastasis, whereas the Neu-YD line had decreased metastasis. In this study, we examined the role of increased production of CXCL12 in tumor cell invasion and malignancy. METHODS: We studied invasion in the tumor microenvironment using multiphoton intravital imaging, in vivo invasion and intravasation assays. CXCL12 signaling was altered by using the CXCR4 inhibitor AMD3100 or by increasing CXCL12 expression. The role of macrophage signaling in vivo was determined using a colony-stimulating factor 1 receptor (CSF-1R) blocking antibody. RESULTS: The Neu-YD strain was reduced in invasion, intravasation and metastasis compared to the Neu-YB and Neu deletion mutant (activated receptor) strains. Remarkably, in the Neu-YB strain, in vivo invasion to epidermal growth factor was dependent on both CXCL12-CXCR4 and CSF1-CSF-1R signaling. Neu-YB tumors had increased macrophage and microvessel density. Overexpression of CXCL12 in rat mammary adenocarcinoma cells increased in vivo invasion as well as microvessel and macrophage density. CONCLUSIONS: Expression of CXCL12 by tumor cells results in increased macrophage and microvessel density and in vivo invasiveness

    Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo

    Get PDF
    INTRODUCTION: The ras pathway is essential for cell growth and proliferation. The effects of R115777, a farnesyl transferase inhibitor, were investigated in cancer cell lines expressing varying levels of growth factor receptors and with differing ras status. Effects on tumour xenografts and human ductal carcinoma in situ (DCIS) of the breast in a xenograft mouse model were also tested. METHOD: In vitro, the concentrations required to reduce cell numbers by 50% (50% inhibitory concentration) were established (MDA-MB231, MCF-7, MCF-7/HER2-18, BT-474, SK-BR3 and SKOV3). Human DCIS was implanted in nude mice or, in separate experiments, cultured cells were injected (MDA-MB231, MCF-7/HER2-18, SKOV3) and allowed to form tumours. Proliferation and apoptosis were determined by immunohistochemistry in xenografts and cell tumours. RESULTS: The 50% inhibitory concentrations varied a hundred-fold, from 39 nmol/l (± 26 nmol/l) for SKBR3 to 5.9 μmol/l(± 0.8 μmol/l) for MDA-MB231. In MCF-7/HER2-18 and SKOV3 cells the levels of tumour growth inhibition were approximately 85% and 40%, respectively. There was a significant decrease in the cell turnover index (CTI; proliferation/apoptosis). In MDA-MB 231 with activated k-ras no inhibition was observed. In treated DCIS xenografts proliferation decreased and apoptosis increased. The CTI ratio between the start and 1 and 2 weeks of treatment were 1.99 and 1.50, respectively, for controls and 0.85 (P = 0.005) and 0.75 (P = 0.08) for treated xenografts. CONCLUSION: Treatment with the farnesyl transferase inhibitor reduced cell growth in vitro and cell tumour growth in vivo. In DCIS treatment resulted in a reduced CTI. R115777 is a promising treatment for breast cancer but the relation between effect and growth factor receptor and ras status has to be established

    Tyrosine kinase signalling in breast cancer: Tyrosine kinase-mediated signal transduction in transgenic mouse models of human breast cancer

    Get PDF
    The ability of growth factors and their cognate receptors to induce mammary epithelial proliferation and differentiation is dependent on their ability to activate a number of specific signal transduction pathways. Aberrant expression of specific receptor tyrosine kinases (RTKs) has been implicated in the genesis of a significant proportion of sporadic human breast cancers. Indeed, mammary epithelial expression of activated RTKs such as ErbB2/neu in transgenic mice has resulted in the efficient induction of metastatic mammary tumours. Although it is clear from these studies that activation these growth factor receptor signalling cascades are directly involved in mammary tumour progression, the precise interaction of each of these signalling pathways in mammary tumourigenesis and metastasis remains to be elucidated. The present review focuses on the role of several specific signalling pathways that have been implicated as important components in RTK-mediated signal transduction. In particular, it focuses on two well characterized transgenic breast cancer models that carry the polyomavirus middle T(PyV mT) and neu oncogenes

    Tumor-induced stromal reprogramming drives lymph node transformation.

    Get PDF
    Lymph node (LN) stromal cells, particularly fibroblastic reticular cells (FRCs), provide critical structural support and regulate immunity, tolerance and the transport properties of LNs. For many tumors, metastasis to the LNs is predictive of poor prognosis. However, the stromal contribution to the evolving microenvironment of tumor-draining LNs (TDLNs) remains poorly understood. Here we found that FRCs specifically of TDLNs proliferated in response to tumor-derived cues and that the network they formed was remodeled. Comparative transcriptional analysis of FRCs from non-draining LNs and TDLNs demonstrated reprogramming of key pathways, including matrix remodeling, chemokine and/or cytokine signaling, and immunological functions such as the recruitment, migration and activation of leukocytes. In particular, downregulation of the expression of FRC-derived chemokine CCL21 and cytokine IL-7 were accompanied by altered composition and aberrant localization of immune-cell populations. Our data indicate that following exposure to tumor-derived factors, the stroma of TDLNs adapts on multiple levels to exhibit features typically associated with immunosuppression.This research was supported by the CIMR Flow Cytometry Core Facility. We wish to thank all FCCF staff members for their advice and support in flow cytometry and cell sorting applications. Work was supported by Medical Research Council funding. BAH is supported by the Royal Society (University Research Fellowship).This is the author accepted manuscript
    corecore