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ABSTRACT 1 

Lymph node (LN) stromal cells, particularly fibroblastic reticular cells (FRCs), 2 

provide critical structural support and regulate immunity, tolerance and 3 

transport properties of LNs. In many tumors, LN metastasis is predictive of 4 

poor prognosis. However, stromal contribution to the evolving 5 

microenvironment of tumor draining LNs (TDLN) remains poorly understood. 6 

Here we show that FRCs of TDLNs expand but also significantly remodel. 7 

Comparative transcriptional analysis of resting and TDLN FRCs demonstrated 8 

reprogramming of key pathways including matrix remodeling, 9 

chemokine/cytokine signaling and immune functions including leukocyte 10 

recruitment, migration and activation. Stromal-mediated structural and 11 

transcriptional adaptations, including downregulation of CCL21 and IL7, were 12 

accompanied by altered cellular composition and aberrant localization, both 13 

characteristics typical of immune dysfunction and the generation of a 14 

suppressive niche. 15 

 16 

INTRODUCTION 17 

LNs form an integral part of both our lymphatic and immune systems, acting 18 

as “filters” to surveil potential lymph borne pathogens, and as an 19 

immunological hub maintaining homeostasis or eliciting effective immune 20 

responses.  To enable these specialized functions, the LN is highly organized 21 

into discrete cellular compartments. The supporting stromal cells are central 22 

to organization and function1, 2, 3 and the major stromal subsets, lymphatic 23 

endothelial cells (LEC), blood endothelial cells (BEC) and fibroblastic reticular 24 

cells (FRC) can be distinguished by their relative expression of surface 25 

markers podoplanin and CD312. 26 

 27 

Lymph draining from peripheral tissues enters via LEC-lined afferent 28 

lymphatic vessels and along lymphatics that line the subcapsular and 29 

medullary sinuses before exiting in efferent lymphatics4.  However, smaller 30 

constituents such as chemokines and soluble antigen below 70kDa can cross 31 

the lymphatic sinus floor and penetrate deeper into the LN, along narrow 32 

conduit channels formed by collagen fibrils and FRCs5, 6, 7. While the conduit 33 
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network provides underlying structural support4, FRCs have additional 1 

properties vital for proper lymph node function. They produce a number of 2 

chemical cues that are critical for immune cell migration, localization and 3 

survival such as homeostatic chemokines CCL19 and 218, whose receptor 4 

CCR7 is present on naïve T cells, B cells and Dendritic Cells (DCs)9. 5 

Gradients of these chemokines direct intranodal migration and survival during 6 

homeostasis and infection3, 10, 11, lymphocyte homing to LNs12 and mediate 7 

interactions between T cells and DCs8. FRCs are a major source of IL7, 8 

essential for naïve T cell survival2. Those resident in follicles also contribute to 9 

B cell homeostasis and follicle identity via the production of the cytokine 10 

BAFF13. Moreover, specific destruction of FRCs is a method employed by 11 

viruses to avoid detection during infection14. More recently, evidence indicates 12 

that FRCs not only contribute to the onset of effective immune responses, but 13 

conversely to immunological tolerance, switching off an immune response via 14 

deletion of self-reactive T cells15, 16, 17. 15 

 16 

LNs also feature in numerous pathologies. In cancer, they represent the first 17 

site of metastasis for many tumor types and are independently predictive of 18 

poor prognosis18, 19. Yet, despite our increasing efforts to understand the 19 

processes of lymphatic metastasis and LN colonization20, the mechanisms 20 

underlying the failure of effective anti-tumor immune responses in the LN, and 21 

the relationship of both to poor outcome remain poorly characterized. Tumor-22 

derived interstitial fluid and its constituents drain to downstream LNs, bathing 23 

the cells it encounters en route. Therefore, the potential exists for tumors to 24 

exploit this means of communication to remotely control responses in tissues 25 

such as the LN to its survival advantage. 26 

 27 

Given our current knowledge pertaining to stromal cell contribution in LN 28 

function, and the importance of stromal cells within the tumor 29 

microenvironment, we characterized the response and potential 30 

consequences of changes to FRCs in TDLNs. Here we use transcriptomic 31 

analysis of stromal populations isolated from LNs to demonstrate that FRCs, 32 

specifically within TDLNs, undergo structural remodeling and transcriptional 33 

modifications, and that these correlate with gross modifications in cellular 34 
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composition and localization prior to the arrival of tumor cells. These 1 

observations imply that aberrant stromal cues impact the downstream 2 

structure and function of tumor draining lymph nodes. 3 

 4 



 5 

RESULTS 1 

Enlargement of TDLNs is supported by expansion of stromal cells and 2 

FRC network remodeling. 3 

The role of stromal cells within tumor draining lymph nodes (TDLNs) and their 4 

contribution to the evolving microenvironment has yet to be established. 5 

Therefore to study stromal cells during tumor development, prior to the 6 

establishment of LN metastases, we utilized a well-established B16.F10 7 

melanoma model in which individual draining LNs were assessed over a 8 

period of 14 days. Confocal imaging of whole nodes illustrated significant 9 

enlargement of tumor-draining brachial LNs (Fig. 1a and Supplementary Fig. 10 

1a). Quantification of LN cellularity by flow cytometry further confirmed the 11 

expansion of LNs downstream of tumors (Fig. 1b and c) at pre-metastatic 12 

time points. The absence of tumor cells in TDLNs was confirmed by qRT-PCR 13 

of Tyr1 and Dct mRNA expression in total LNs (Supplementary Fig 1b). In 14 

contrast, LNs of PBS-injected control mice (non-draining lymph nodes; 15 

NDLNs) remained at a constant size over the period examined (Fig. 1c). The 16 

observed increases in cellularity were confined specifically to sentinel LNs, as 17 

adjacent, but not primary draining LNs, did not expand (Supplementary Fig. 18 

1ci total LN and stromal cells cii).  19 

To examine stromal cells within TDLNs, populations were identified based on 20 

the differential expression of PDPN and CD31 among CD45- non-21 

hematopoietic cells (gating strategy Fig. 1b). Using this approach, significant 22 

expansion in BECs, LECs and FRCs was recorded over the course of tumor 23 

development specifically within TDLNs (Fig. 1d). Consistent with B16.F10 24 

allografted tumors, TDLNs of tumor-bearing Tyr::CreER,BrafCA,Ptenlox mice, 25 

which develop melanoma after induction of melanocyte-specific BrafV600E 26 

expression and Pten silencing, were also enlarged (Fig. 1e and 27 

Supplementary Fig. 2a). In these animals, tumors developed at multiple 28 

independent sites; primarily the shoulder and lower flank. Quantification of 29 

cellularity in draining inguinal LNs (iLNs) and brachial LNs (braLNs) confirmed 30 

enlargement, which was supported by expansion of all stromal populations 31 

(Fig. 1f and Supplementary Fig. 2a). Proliferation of expanding FRCs was 32 

confirmed by in vivo EdU labeling. Surprisingly, turnover of LECs and BECs 33 
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remained in line with ND counterparts (Supplementary Fig. 2b). Indicative of 1 

a requirement beyond the provision of structural support to an enlarging node, 2 

a significant increase in the ratio of FRCs to whole node cell counts after 11 3 

days was measured (Supplementary Fig. 2c) leading us to examine FRC 4 

network changes after tumor induction in more detail. FRC networks and 5 

conduits remained intact in TDLNs, with collagen I cores surrounded by ER-6 

TR7 matrix and PDPN+ FRCs (Supplementary Fig.3a-c). Skeleton analysis 7 

of FRC network complexity revealed less branches per field of view in FRCs 8 

of TDLNs compared to NDLNs (Fig. 1g), whereas branch length 9 

(Supplementary Fig. 3d) and FRC cell size (data not shown) were 10 

unchanged. Gap analysis demonstrated significant greater distances between 11 

adjacent FRC networks in TDLNs (Fig. 1h), and further evaluation of PDPN 12 

lined conduits using high power Airyscans revealed that conduit thickness as 13 

measured by ellipse area of the central collagen I core was significantly 14 

enlarged in TDLNs (Fig. 1i). Moreover, such detailed end-on scans highlight 15 

changes to the architecture of individual TDLN conduits compared with ND 16 

counterparts (Fig. 1i and Supplementary Fig.3c). Together, the data imply 17 

that conduits of TDLNs enlarge rather than increase in frequency, and hence 18 

increasing FRC numbers might be required to provide cellular coverage to 19 

support the growing conduit diameter.  20 

 21 

Transcriptional profiling identifies alterations in TDLN FRCs  22 

Considering observations of both TDLN enlargement and FRC network 23 

remodeling and frequent reports of immune dysfunction in tumors21-26 we 24 

sought to identify how FRCs of expanding TDLNs adapt to the evolving 25 

microenvironment, and whether these changes ultimately translate to pro-26 

tumor structural and functional modifications in the LN. To do this, FRCs from 27 

LNs at days 4 and 11 post B16.F10 inoculation were freshly sorted and 28 

subjected to whole genome transcriptional profiling. At day 4, tumors were 29 

barely palpable thus this time point was chosen to represent an early stage of 30 

tumor development, where the tumor microenvironment is not yet fully 31 

established and communications with draining lymph nodes are likely at their 32 

earliest stages via resident dermal lymphatic vessels. In contrast, large day 11 33 
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tumors with established stroma and LN connections represent the late stage 1 

of LN transformation. Inter-replicate coefficients of variation confirmed 2 

consistency between samples, with means of 0.036, 0.037, and 0.035 for 3 

NDLN, day 4 (4d) and day 11 (11d) TDLNs respectively. Analysis of the gene 4 

array data revealed distinct transcriptomes between FRCs from TDLNs and 5 

NDLNs. By plotting probe expression level in order of highest change to 6 

lowest change for day 4 (4d), day 11 (11d) and NDLN expression profiles 7 

(Supplementary Fig. 4a-c), and applying a cutoff of probes with a fold 8 

change > ± 1.5, it is clear that significantly large expression changes occur 9 

within TDLNs. We performed statistical analysis on these most significantly 10 

altered probes from both 4d and 11d TDLN arrays resulting in a total of 244 11 

significantly deregulated probes. We initially calculated principal components. 12 

When plotted, eigenvalues of the principal components (Supplementary Fig. 13 

4d) highlight that a majority of variance in the data (88.9% and 4.5% 14 

respectively) is contained within the first two components, and the first two 15 

components for these deregulated probes partition into their respective 16 

sample types (Fig. 2a). Principal component 1 separates NDLN and day 4 17 

TDLN effectively, and principal component 2 separates NDLN and day 11 18 

TDLN probes. Correlation matrix plots of the same probe set reinforced this 19 

relationship (Fig. 2b), showing strong association within all datasets. This was 20 

further confirmed by hierarchical clustering (Fig. 2c) where all three probe 21 

types were clustered into their respective groups (NDLN, 4d TDLN, and 11d 22 

TDLN), and TDLN samples from the two different time points were clustered 23 

closer to each other than to NDLN samples. The heatmap, however, linked to 24 

the hierarchical clusters (Fig. 2c, bottom) reveals that clusters of samples 25 

(NDLN, day 4 TDLN, and day 11 TDLN) exhibit the same pattern of changes 26 

in expression levels within their groups i.e. all NDLN show the same probe 27 

expression changes. These data demonstrate that expression profiles for 4d 28 

TDLNs and 11d TDLNs are distinct and replicable, and implies that FRCs are 29 

undergoing a gradual reprogramming response after exposure to tumor 30 

factors with 4d representing a distinct and transitional state, rather than simply 31 

exhibiting a weaker profile of 11d TDLNs.  32 

 33 

Identification of specific genes and pathways deregulated in TDLN FRCs 34 
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Initially, FRCs from TDLNs after 4 or 11 days of tumor exposure were 1 

compared to ND FRCs using probes exhibiting over 1.5 fold difference and a 2 

p-value below 0.05 (Supplementary Fig. 5a). Differential deregulation of 3 

probe expression between days 4 and 11 highlighted transient increases or 4 

vice versa, which likely represent early activation or repression of FRC 5 

signaling pathways, and either return to control levels by day 11 or continue to 6 

be further up or downregulated. Whilst the expression levels of probes within 7 

the array clearly differ over time, the number of probes with altered expression 8 

values is comparable. 106 probes were downregulated with a fold change 9 

greater than 1.5 at day 4, and 81 at day 11 with an overlap (i.e. probes that 10 

similarly upregulated in both) of 39 (Fig. 3a i), whereas 117 probes were 11 

upregulated at day 4, 131 at day 11 with an overlap of 25 probes (Fig. 3a ii). 12 

Volcano plots illustrate the top deregulated probes between 4d/11d versus ND 13 

and 11d versus 4d as ranked by their expression levels (Fig. 3b). For 14 

example, AQP1 is among the top upregulated genes after 4d (Fig. 3b i), 15 

however, by 11d it returns to baseline expression levels (Fig. 3b iii and 16 

Supplementary Fig. 8a). In contrast, FXYD6, IGH-4, THY1 and PTX3 (Fig. 17 

3b ii) are among the top upregulated genes when comparing 11d and 4d (Fig. 18 

3b iii), indicating that these represent a unique late stage signature. 19 

Clustering the top deregulated genes into functional groups, clear differences 20 

in genes key to cell proliferation, protein metabolism, mitochondrial function, 21 

movement and migration, and junction molecules were observed (Fig. 3c). 22 

Functional annotations were collated using GSEA and ingenuity (IPA) 23 

analysis according to the overlapping deregulation of probes in 4d and 11d 24 

TD from KEGG (GSEA, normalized enrichment score, Supplementary Fig. 25 

5b), canonical pathways (IPA, displayed ordered by z score or P value, 26 

Supplementary Fig. 5c) and from disease and biofunctions (IPA, displayed 27 

ordered by z score or P value, Supplementary Fig. 5d). 28 

 29 

Perturbation of FRC-derived chemokine/cytokine signaling modifies 30 

immune composition of TDLNs  31 

FRCs are an essential source of chemokines and cytokines necessary for 32 

immune homeostasis, leukocyte trafficking and survival within the LN27. Both 33 

GSEA and Ingenuity (IPA) analyses identified these pathways to be 34 
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significantly deregulated in FRCs of TDLNs (Fig. 4a). While signaling 1 

molecules such as LIMK2, KRAS, TGFBR2 and SRC were upregulated, 2 

cytokines and chemokines including IL19, IL7, CCL4 and CCL21 were 3 

downregulated after 4 and 11d. As FRCs provide the bulk of CCL21 and IL72, 4 

8, 12, directly contributing to lymphocyte localization and survival, mRNA levels 5 

were verified in independent sample sets by qRT-PCR confirming significant 6 

downregulation of IL7 and CCL21 mRNA in TDLN FRCs in both tumor models 7 

examined (Fig. 4b). Confocal imaging further confirmed a reduction in CCL21 8 

expression at the protein level (Fig. 4c). Focusing on the B16.F10 model, a 9 

reduction in T cell area and concurrent increase in the B cell follicle size per 10 

node was measured in imaged TDLNs (Supplementary Fig. 6a) and 11 

corresponding reductions in CD3e+ cellularity were confirmed by flow 12 

cytometry (Fig. 4d). Although no change in CD8a+ T cells were measured 13 

(Supplementary Fig. 6b), a significant reduction in the percentage of CD4+ T 14 

cells was observed in TDLNs after 11 days of tumor drainage (Fig. 4e). Within 15 

this population, the percentage of naïve CD4+CD62L+CD44- T cells dropped 16 

(Fig. 4f). This was accompanied by increases in memory (CD62L+CD44+) and 17 

activated (CD62L-CD44+) CD4+ T cells (Fig. 4f) as well as a significant 18 

increase in CD4+FoxP3+ regulatory T cells (Fig. 4g and Supplementary Fig. 19 

6c). Moreover, we observed impaired homing efficiency of CD4+ T cells into 20 

11d TDLNs (Fig. 4h). Considering the observed FRC network remodeling, 21 

altered chemokine profiles and immune composition into account, we 22 

examined the cellular architecture of LNs and observed mislocalization and 23 

disorganization of major immune cell populations in TDLNs. In contrast to 24 

NDLNs where T and B cell zones were clearly delineated (Supplementary 25 

Fig. 6c, left panel), TDLNs exhibited integration of the 2 populations with loss 26 

of delineation between T/B cell borders (Supplementary Fig. 6d right panel, 27 

and Fig. 4i). A transitional stage was observed in 4d TDLNs (Supplementary 28 

Fig. 6c middle panel). Furthermore, in TDLNs, B cells were frequently 29 

clustered around high endothelial venules (HEVs, Fig. 4j i, quantified in Fig. 30 

4j ii). As no differences in B cell homing capacity were measured between ND 31 

and TDLNs (Fig. 4k), this, together with FRC-derived cytokine changes would 32 

imply that in TDLNs, once exited HEVs, B cells are not able to sense the 33 

appropriate cues responsible for directing them to the B cell follicle. Moreover, 34 
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staining with EdU indicated a reduced proliferation of T cells and B cell 1 

compartments from TDLNs (Supplementary Fig. 6e and f). Beyond CCL21 2 

and IL7, the gene array also highlighted other factors deregulated in FRCs of 3 

TDLNs. These included CXCL14, chemotactic to monocytes and DCs; 4 

CCL25, chemotactic to DCs; and CCL7, chemotactic to monocytes; all of 5 

which were upregulated at day 11. Consistent with gene array trends, and 6 

following a transient dip at day 4, CD11c+ dendritic cells (DCs) and CD11b+ 7 

Macrophages (MΦ, Supplementary Fig. 7a) significantly increased in 8 

numbers in 11d TDLNs (Supplementary Fig. 7b and c). 9 

 10 

FRCs of TDLNs are more activated  11 

Disruption of ECM homeostasis and “cancer-associated fibrosis” is commonly 12 

observed at the primary tumor28, and is mediated by hyper-activated 13 

fibroblasts (cancer-associated fibroblasts, CAFs) within the local 14 

microenvironment29. Therefore, adaptation of the pre-metastatic lymph node, 15 

reliant of fibroblast remodeling is also likely to be reminiscent of fibrosis30, 31. 16 

Microarray data highlighted elevated expression levels of genes encoding 17 

typical fibroblast activation markers including podoplanin, fibronectin, CD248, 18 

α-smooth muscle actin, FSP1, vimentin, myosin light chains and collagens 19 

(Fig. 5a) indicating the heightened activation status of FRCs in nodes draining 20 

tumors. Levels of PDPN, FSP1, THY1 and CD248 were further verified on 21 

independent data sets by qRT-PCR (Fig. 5b and Supplementary Fig. 7d) 22 

and PDPN at the protein level by flow cytometry (Fig. 5c). Although not 23 

significant, trends for PDPN, FSP1 and THY1 in the genetic model largely 24 

supported that of the B16 at the mRNA level, however, at the protein level 25 

podoplanin was significantly increased in both models. Moreover, flow 26 

cytometry indicated that tumor draining FRCs increase in granularity, which is 27 

indicative of increased internal complexity and corresponding increased 28 

activation status (Fig. 5d). To investigate the activation status further, cultured 29 

FRCs treated with tumor conditioned medium (TCM) obtained from B16.F10 30 

cells for 7 days were compared to control conditioned medium (CCM) treated 31 

cells. In vitro, PDPN was upregulated at both mRNA (Fig. 5e) and protein 32 

levels (Fig. 5f), and TCM treatment enhanced the capacity of FRCs to 33 

contract collagen gels (Fig. 5g).  34 
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 1 

TDLN conduits are more permissive for large molecular weight solute 2 

transport 3 

Profiling of TDLN FRCs also hinted at previously undocumented behavior, in 4 

particular, a significant number of channels/ion transporters are deregulated in 5 

either 4d or 11d TDLNs (Fig. 6a). For example, Aquaporin 1 (AQP1) is highly 6 

upregulated in FRCs of 4d TDLNs, before subsequent downregulation by 11d 7 

(verified by qRT-PCR in Supplementary Fig. 8a). In vitro, cultured FRC 8 

monolayers exhibited a less selective barrier, allowing greater trans-9 

monolayer transport of 500 kDa dextran following exposure to TCM (Fig. 6b). 10 

To investigate if changes to levels of these channels and transporters can 11 

impact fluid transport through the conduit system in vivo, dextran transport 12 

studies were performed and quantified. The capacity of conjugated dextran of 13 

different molecular weights to transit into the normally size-restricted conduits 14 

was analyzed and measured. In both resting and TDLNs, 10 kDa dextran 15 

freely entered into FRC lined conduits, but in contrast to resting nodes, 70 16 

kDa dextran permeated further into paracortical area of 11d TDLNs (Fig. 6c 17 

and d), where it was restricted to the FRC lined conduits (Fig. 6e). Taken 18 

together with earlier data showing larger diameter conduits at 11d (Fig. 1g), 19 

altered transporter repertoires point to a perturbation of conduit capacity, 20 

whereby in TDLNs conduits are more permissive for fluid to enter and transit, 21 

potentially enabling greater penetration of soluble tumor-derived factors to 22 

deeper areas of the LN. As a result of the altered environment of TDLNs, 23 

significant changes in cell assembly machinery would be expected to underlie 24 

the restructuring and enlargement of the FRCs, as would the need for 25 

interaction with associated matrix proteins essential to the conduit. The 26 

observation of thickened collagen cores but reduced branches implies that 27 

additional FRCs go to support the increased diameter of the conduit. In doing 28 

so, FRCs will form contacts with a larger number of neighbors, and encounter 29 

a greater area of their neighboring cells. As predicted, network analysis (Fig. 30 

6f, with interaction networks shown in Supplementary Fig. 8b), highlights 31 

four significantly relevant probe groups heavily involved in cell structure, 32 

shape and extracellular matrix. Such analyses link probe sets into functionally 33 

and spatially linked networks, highlighting families of genes that are both 34 
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significantly deregulated and involved in the same biological pathways, 1 

expressed together, or have physical interactions. A schematic model shown 2 

in Fig. 6g illustrates the conduit profile in a resting state (ND) and at an 3 

advanced pre-metastatic stage (TDLN day 11). Gene array expression data 4 

for day 4 suggests that cells proliferate and conduits begin to reorganize, 5 

potentially driven by increased drainage from the tumor or exposure to tumor-6 

derived factors. At the same time, deregulation of ion channels and 7 

aquaporins result in changes to the cells capacity to deal with fluid and the 8 

immunological profile of the cell changes. By day 11, imaging studies, 9 

combined with gene expression analysis show that a new altered state is 10 

reached, characterized by transcriptional signatures and structural 11 

adaptations that drive modulation of a) scaffolding proteins involved in the 12 

cytoskeleton, cell junctions and extracellular matrix remodelling, b) cytokines 13 

(CCL21 and IL7) and other biochemical cues, and c) conduit integrity, 14 

permeability and consequently transport properties throughout the node. 15 
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DISCUSSION 1 

 2 
Lymph nodes function as a major immunological hub, essential for immune 3 

homeostasis and generation of appropriate immune responses, yet LNs are 4 

also the first site of metastasis for many cancers that manage to avoid 5 

immune-mediated clearance. It is increasingly accepted that LNs receive and 6 

respond to tumor-derived signals generating a pro-tumor niche, but it remains 7 

unclear as to how these responses manifest and who in the LN drives them. 8 

The stromal populations of the LN not only provide structural support but are 9 

essential to its maintenance and physiological function1-3, 6, 8-14, 32-36. While 10 

studies have shown that tumor-derived VEGF and VEGF-C contribute to LN 11 

lymphangiogenesis and vascular reorganization37-39, the fibroblasts of the LN, 12 

FRCs, and the conduit network they form have not been thoroughly 13 

investigated in the context of the tumor and subsequent modulation of LN 14 

behavior. Here we describe that expansion, remodeling and transcriptional 15 

reprogramming of FRCs occurs in TDLNs. This in turn impacts FRC-driven 16 

chemokine signaling, trafficking events, immune localization and transport, all 17 

of which have the potential to contribute to impaired lymph node function, that 18 

in the context of a tumor may provide a pro-tumor environment. 19 

 20 

We demonstrate that TDLNs enlarge, consistent with previous studies37, 39, 40. 21 

Integral to this enlargement is structural reorganization of the node supported 22 

by expansion and adaptation of the stromal compartments. In particular, we 23 

observed that the FRCs not only increased in number, but the resulting 24 

network exhibited fewer FRC branches that were further apart, and conduit 25 

diameters were significantly greater. To understand the potential ramifications 26 

of such changes within the stromal compartment we then analyzed 27 

transcriptomes of FRCs isolated from resting and tumor draining LNs. This 28 

analysis revealed striking transcriptional reprogramming events restricted to 29 

the node immediately downstream of a tumor, and identified a transitional 30 

process with early response genes and deregulation of key pathways 31 

including fibrosis, chemokine and cytokine signaling, immune cell migration, 32 

activation and trafficking. 33 



 14 

Key to LN function, FRC-derived CCL21 and IL-7 were deregulated. 1 

Significant downregulation was verified in two independent murine models of 2 

melanoma. Decreased expression of both can contribute to abnormal immune 3 

cell homing, localization and survival. It has been previously reported that 4 

TDLNs exhibit reduced CCL2141, 42. Consistent with these findings we 5 

observed gross architectural aberrations, with loss of the clear demarcation 6 

between B and T cells, T cells frequently located within B cell zones, and 7 

reduced T cell area. These features phenocopy plt/plt mice, where 8 

spontaneous loss of LN-specific CCL19 and CCL21 isoforms translate to 9 

fewer T cells and impaired immune responses2, 12, 34, 43. Moreover, CCL21 10 

produced by FRCs surrounding high endothelial venules (HEVs) is essential 11 

for egress of B cells and T cells from the circulation towards their respective 12 

compartments. As observed in TDLNs, B cells displayed no impairment in LN 13 

homing, accumulated around HEVs indicating disruption of their normal 14 

guidance cues. 15 

Our results also draw parallels with other pathological states such as 16 

infection, where reduced nodal CCL21 underpins the aberrant homing and 17 

mislocalization of key immune populations required for immune evasion by 18 

Salmonella or virus particles14, 35, 44. It should be noted however, that 19 

pathogen-related inflammation was not underlying our observations. Firstly, 20 

stromal modifications were consistent in two independent melanoma models, 21 

one of which is genetically driven rather than allografted. Secondly, a 22 

comparison of our array with data from Malhotra et al., in which responses of 23 

lymph node stroma to LPS-mediated inflammation were characterized27, 24 

shows that the response of the FRCs downstream of a tumor is tumor-25 

dependent. In particular, key factors such as CCL21 and IL7 were inversely 26 

regulated between the two pathological settings (data not shown). 27 

Furthermore, upregulation of several other chemotactic factors were recorded 28 

indicating changes to other immune populations in the LN; CXCL14, 29 

chemotactic to monocytes and DCs, CCL25, chemotactic to DCs, and CCL7, 30 

chemotactic to monocytes. Additionally, CCL4 also known as MIP-1β was 31 

found to be downregulated. CCL4-responsive antigen-naïve CD8 T cells have 32 

been reported to chemotact to sites rich in stimulated DCs, which is implicated 33 
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in optimal activation of CD8+ T cells and long term memory45. Since FRCs 1 

have been shown to be the source of CCL411 in the LN, a downregulation in 2 

TDLNs may result in a reduction of this T cell population. Beyond the 3 

disruption of immune compartmentalization, we also present evidence to 4 

implicate FRC transcriptional modulation in the altered immune composition of 5 

TDLNs. Within draining nodes, we observed fewer naïve CD4+ T cells and 6 

accumulation of Tregs consistent with previous studies correlating their 7 

presence with immune suppression and disease progression46. We detected 8 

enlarged B cell follicles within TDLNs, and although the activation status or 9 

subtypes of the B cells occupying TDLNs remains to be determined, recent 10 

reports have demonstrated that B cells do indeed accumulate in TDLNs47, 11 

and that these may function as regulatory B cells48 adding a further dimension 12 

to the local immune suppressive environment. 13 

Transcripts of TDLN FRCs also indicated the acquisition of a more activated 14 

status evident from upregulation of Thy1, podoplanin, FSP1, CD248, vimentin, 15 

collagens, fibronectin, α smooth muscle actin, and the capacity to contract 16 

collagen gels more efficiently upon receipt of tumor conditioned media, 17 

consistent with previous work49, 50. This signature in particular is reminiscent 18 

of fibroblasts found within the tumor microenvironment, and that also possess 19 

immune suppressive attributes51-55, leading us to speculate that in LNs 20 

downstream of tumors, FRCs adopt a more CAF-like state to provide a 21 

supportive niche28, 30, 31.  22 

 23 

Within TDLNs, wider conduits and enhanced collagen deposition point to 24 

increased stiffness of the node40, but the remodeling of the collagen core may 25 

also contribute to the size exclusion properties of the conduits5, 6, that in 26 

TDLNs was disrupted with large MW dextran reaching deeper into the conduit 27 

network than in resting nodes. This, combined with deregulated junction 28 

properties and protein pores of the FRCs lining these channels, suggests an 29 

altered integrity of the conduit network. These changes have the potential to 30 

lead to rapid, but poorly controlled delivery of tumor-derived factors, debris 31 

and antigen to the deeper areas of the LN upsetting the functional status quo. 32 

Moreover, the process of lymphangiogenesis both at primary tumors and 33 
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connected LNs enhances the drainage capacity, and consequently these 1 

stromal populations experience raised fluid flux and shear stresses. 2 

Mechanical cues such as these rather than chemical, tumor-derived signals 3 

(data not shown) may also act as a stimulus for FRC proliferation56-59 or 4 

synergize to drive the transcriptional reprogramming. We have not excluded 5 

this in the present study, but this avenue warrants more in depth investigation 6 

using in vitro studies in which the effects of biophysical stimuli i.e. flow can be 7 

isolated. 8 

 9 

In summary, using functional assays and comparative transcriptome analysis 10 

of FRCs in resting and TDLNs in multiple tumor models, we demonstrate that 11 

FRCs immediately downstream of tumors acquire unique transcriptional 12 

programs. Together with structural remodeling, these deregulated pathways 13 

and adapted FRC traits contribute to modified immune composition and 14 

aberrant localization that may ultimately translate to a more suppressive, pro-15 

tumor environment. 16 

 17 

METHODS 18 

Methods and any associated references are available in the supplementary 19 

information of the paper. 20 
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Figure legends 1 

Figure 1: LN expansion and FRC network remodeling in TDLNs. (a) 2 

Representative confocal images of ND (left) and 11d TD (right) brachial LNs 3 

showing stromal cell populations and the increased size of TDLNs. (b) Flow 4 

cytometry gating strategy for isolation of stromal cells from ND (top) and 11d 5 

TD (bottom) LNs. Stromal subtypes: FRC, PDPN+CD31-; LEC, PDPN+CD31+; 6 

BEC, PDPN-CD31+. Numbers in boxes represent percentages of parent 7 

population in gate. (c and d) Expansion of TD (red) compared to ND (PBS 8 

control, cyan) LNs over a time course of 14 days measured by flow cytometry. 9 

Total LN cells (c), BECs, LECs, and FRCs (d) were quantified. Quantification 10 

of total LN cells (e) and stromal cells (f) of TDLNs and NDLNs measured by 11 

flow cytometry in shoulder B16.F10 or induced Tyr::CreER,BrafCA,Ptenlox 12 

tumors on either the shoulder or lower flank. For shoulder tumors the brachial 13 

LN (braLN) and for flank tumors the inguinal LN (iLN) were identified to be the 14 

primary draining LNs. (g) Skeleton analysis of collagen I networks in T cell 15 

areas determined the number of conduit branches per Field Of View (FOV) in 16 

ND and TDLNs. (h) Gap analysis of collagen I networks determined the 17 

distance between conduit branches in ND and TDLNs. (i) Confocal Airyscans 18 

of conduit end and side views stained for PDPN, collagen I and ERTR7 (left 19 

panel). Conduit thickness measured by 0.1 µm z-stacks of the conduit 20 

collagen I core rotated to display ellipse area of cross section for ND and 21 

TDLNs (right panel). (c and d) Data are representative of two independent 22 

experiments with each 2 (Ctrl) and 3 (Tumor) LNs from independent mice per 23 

replicate. (e and f) Data are representative of 2 independent experiments with 24 

each 3 (ND) and 5 (TD) LNs (B16.F10) and 3/4 (iND) and 2 (iTD, braND, 25 

braTD) (Tyr::CreER,BrafCA,Ptenlox) from independent mice per replicate. (g 26 

and h) Data are from 3-6 individual LNs from independent mice with 3 FOV 27 

analyzed per LN, (i) 3-4 individual LNs from different mice with 5 conduits per 28 

LN imaged and 3 measurements per conduit performed in shortest and 29 

longest axis. Data points indicate the mean ± s.e.m. *P <0.05, **P <0.01 and 30 

***P <0.001. For time courses, data were subjected to two-way ANOVA, 31 

followed by post hoc analysis. When two groups were compared, a two-tailed 32 
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unpaired Student’s t-test was applied. Scale bars (a) 200 µm, (g and h) 50 1 

µm. 2 

 3 

Figure 2: Statistical analysis of microarray results. (a) Principle Component 4 

Analysis of samples from ND, 4d TD, and 11d TD LNs. Analysis was 5 

performed on the most significantly deregulated samples (FC > ± 1.5), and 6 

those with a p value of greater than 0.05, leaving a total of 244 probes. The 7 

top two most significant eigenvectors are illustrated, accounting for 93.4% of 8 

the total variability between samples. Expression data was log2 transformed 9 

and normalized by row before principal component analysis was performed. 10 

(b) Heatmap of coefficients of correlation for most significantly deregulated 11 

probes (the same dataset as used in part a). Red indicates the highest 12 

correlation. (c) Hierarchical clustering analysis of all samples with heatmap of 13 

the top deregulated probes. All analyses were performed on probes with an 14 

expression fold change of over 1.5 and a P value <0.05. Each data point 15 

representing transcriptomes of FRCs of 2 brachial LNs, pooled per mouse. 16 

 17 

Figure 3: Identification of specific genes and pathways deregulated in TDLN 18 

FRCs. (a) Venn diagrams displaying overlap between significantly 19 

downregulated (i), and significantly upregulated (ii) probes in ND, 4d TD, and 20 

11d TD samples. (b) Significantly deregulated probes represented on volcano 21 

plots for 4d TD vs. ND (i), 11d TD vs. ND (ii), and 11d TD vs. 4d TD (iii). 22 

Probes displayed with the most significantly deregulated (FC >± 1.5) 23 

represented as blue (downregulated) or red (upregulated). (c) Heatmaps of 24 

key pathways involving the top deregulated genes with a FC of over 1.5 and a 25 

P<0.05 compared between 4d TD vs. ND and 11d TD vs. ND. Functional 26 

groups were assigned with GSEA and IPA.  27 

 28 

Figure 4: Perturbation in LN critical chemokine/cytokine signaling pathways 29 

correlates with changes in immune cell composition and localization. (a) 30 

Heatmap of significantly deregulated probes (P<0.05) falling into the category 31 

of cytokine and chemokine signaling molecules. Pathway analyses were 32 

performed with GSEA and IPA. (b) mRNA expression levels of IL7 and 33 

CCL21 measured by qRT-PCR in an independent FRC sample set from 34 
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B16.F10 ND, 4d TD and 11d TD LNs, and ND and TD LNs obtained from 1 

Tyr::CreER,BrafCA,Ptenlox tumor-bearing mice. (c) Representative confocal 2 

images of LN paracortical areas of ND (top panel) and 11d TD (bottom panel) 3 

LNs stained for PDPN (green), ERTR7 (blue) and CCL21 (red). (d) Flow 4 

cytometric quantification of T cells (CD45+CD3e+) as percentage of singlets 5 

within ND and 11d TD (B16.F10) LNs. (e) Quantification of CD4+ T cells 6 

(CD45+CD3e+CD4+) in ND and 11d TD (B16.F10) LNs. (f) Quantification of 7 

CD4+ T cell populations; naïve CD62L+CD44-, memory CD62L+CD44+ and 8 

activated CD62L-CD44+. (g) Flow cytometric measurement of regulatory T 9 

cells (CD45+CD3e+CD4+FoxP3+). (h) LN homing assay: Splenocytes were 10 

isolated from GFP+ C57bl/6 mice and injected into wt mice. After 18h LNs 11 

were isolated and immune cell contents were analyzed by flow cytometry. 12 

Quantification of homed CD4+ T cells is expressed as ratio of 13 

CD4+GFP+:GFP+ within ND and 11d TD (B16.F10) LNs. (i) Representative 14 

confocal images of B cell follicles of ND and 11d TDLNs (B16.F10) stained for 15 

CD3e (green), CD45R (red) and Collagen I (blue). (j) Representative confocal 16 

images (i) of ND and 11d TD LNs (B16.F10) stained for CD3e (green) CD45R 17 

(red) and PNAd (blue). Quantification of B cell clustered HEVs on LN sections 18 

(ii). (k) LN homing assay as described in (h): Flow cytometric quantification of 19 

CD45R+ expressed as ratio CD45R+GFP+:GFP+ within ND and 11d TD LNs 20 

(B16.F10). Each data point represents whole transcriptome amplified (WTA) 21 

mRNA samples of brachial LNs pooled per mouse, with 3 mice per condition 22 

and technical duplicates of WTA (B16.F10) and with 5 mice (ND) and 7 mice 23 

(TD) (Tyr::CreER,BrafCA,Ptenlox) (b). Data collected from 5-6 individual ND or 24 

TD LNs from different mice (d). Data representative of 8-10 individual LNs per 25 

condition from two independent experiments (e and f). Data are from 6 ND 26 

and 9 TD LNs from different mice (g). Data collected from two independent 27 

experiments with each 4 (ND) and 3 (TD) LNs (h and k). Data representative 28 

of 6 (ND) and 5 (TD) LNs obtained from independent mice (jii). Data points 29 

indicate the mean ± s.e.m. *P <0.05, **P <0.01 and ***P <0.001. For 30 

comparisons of three or more groups, data were subjected to one-way 31 

ANOVA, followed by post hoc analysis. When two groups were compared, a 32 

two-tailed unpaired Student’s t-test was applied. Scales bars (c and j) 50 µm, 33 

(i) 51 µm (ND) and 38 µm (TD). 34 
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 1 

Figure 5: FRCs in TDLNs become more activated. (a) Heatmap of 2 

significantly deregulated probes (P<0.05) falling into the category of fibroblast 3 

activation status. (b) mRNA expression levels of PDPN, FSP1 and THY1 4 

measured by qRT-PCR in an independent FRC sample set from ND (cyan) 4d 5 

TD (black) and 11d TD (red) LNs from B16.F10, and ND (cyan) and TD (red) 6 

LNs obtained from the Tyr::CreER,BrafCA,Ptenlox model. (c) Flow cytometric 7 

analysis of PDPN surface expression as measured by relative mean 8 

fluorescence intensity of the geometric mean in FRCs isolated from B16.F10 9 

ND, 4d and 11d TDLNs, or ND and TDLNs from the Tyr::CreER,BrafCA,Ptenlox 10 

mice. (di) Representative scatter profile of alive FRCs from ND (left) and 11d 11 

TDLN (right) and (dii) geometric mean of the side scatter of FRCs sorted from 12 

B16.F10 ND (cyan), 4d TD (black) and 11d TD (red) LNs, or ND (cyan) and 13 

TD (red) LNs from Tyr::CreER,BrafCA,Ptenlox mice. (e) mRNA and (f) protein 14 

expression of PDPN by in vitro cultured FRCs treated with control conditioned 15 

medium (CCM) or tumor conditioned medium (TCM) for 7 days as measured 16 

by qRT-PCR or flow cytometry. (g) Comparison of the collagen gel contractile 17 

activity of in vitro FRCs pretreated with CCM or TCM. Each data point 18 

represents WTA mRNA samples of brachial LNs pooled per mouse, with 3 19 

mice per condition and technical duplicates of WTA (B16.F10) and with 5 20 

mice (ND) and 7 mice (TD) (Tyr::CreEr,BrafCA,Ptenlox) LNs.  (b). Data are from 21 

4-7 (B16.F10) or 4-12 (Tyr::CreER,BrafCA,Ptenlox) individual LNs taken from 22 

different mice (c and d). Data are representative of three independent 23 

experiments (e - g) performed in triplicate per condition. Data points indicate 24 

the mean ± s.e.m. *P <0.05, **P <0.01 and ***P <0.001. For comparisons of 25 

three or more groups, data were subjected to one-way ANOVA followed by 26 

post hoc analysis. When two groups were compared, a two-tailed unpaired 27 

Student’s t-test was applied 28 

 29 

Figure 6: Modified transporter repertoires within TDLN FRCs translate to 30 

altered solute transport throughout the conduit system of the node. (a) 31 

Heatmap for significantly (P<0.05) deregulated probes involved in ion/solute 32 

conduction or membrane permeability. (b) In vitro measurement of relative 33 

permeability of 10 70 and 500 kDa dextran transport through an FRC 34 
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monolayer pretreated for 7 days with CCM or TCM and measured after 22 h. 1 

(c) Filling of the conduit network in ND and 11d TD LNs 10 min after 2 

subcutaneous injection of Texas Red-labeled 10 kDa dextran and biotin-3 

labeled 70 kDa dextran. Quantification of fluorescence signals of 70kDa 4 

dextran and ERTR7 per paracortical area displayed as area fraction (ci and 5 

cii). (d) Quantification of 70 kDa dextran as relative fluorescence intensity (FI) 6 

per area and representative high-magnification micrograph of the paracortical 7 

region from ND and 11d TDLNs counterstained with PDPN. Each channel is 8 

gray scaled (e) Close up of dextran filled conduit from a 11d TDLN, staining 9 

for 70 kDa dextran (magenta) within a PDPN+ FRC (green) lined conduit. (f) 10 

Network analysis of the top deregulated probes within gene arrays for 11d 11 

TDLN samples. Top networks calculated with the MANIA algorithm are shown 12 

with heatmaps of the probes for each time point. Sets of probes are related 13 

through either function, regulation, or physical space. (g) Schematic of the 14 

proposed changes in FRC conduits. In response to tumor factors ND (left) 15 

FRCs proliferate leading to an increase in the size of the conduit by 11d 16 

(right), and matrix deposition manifesting as increased diameter of the 17 

collagen core. Subsequent to this there is an increase in the amount of 18 

solute/ion transporters expressed within the cells leading to a potential 19 

increase in fluid movement within the conduits. By 11d TD, the increased 20 

expression of solute/ion channels leads to a potential increase in the ability for 21 

fluid to pass through the conduit. The concurrent upregulation of extracellular 22 

matrix components and altered cell-cell interactions indicate a potential 23 

thickening of the matrix of the conduit core. Furthermore, two important FRC 24 

factors, CCL21 and IL7 are downregulated over time leading to changes in 25 

immune cell localization and composition. Data are representative of two 26 

independent experiments (b) performed in five replicates per condition. Data 27 

are from 4 (ND) or 3 (TD) (B16.F10) individual LNs taken from different mice 28 

(c and d). Data points indicate the mean ± s.e.m. *P <0.05, **P <0.01 and 29 

***P <0.001. For comparisons, a two-tailed unpaired Student’s t-test was 30 

applied. Scale bars (d) 50 µm (e) 3.4 µm. 31 
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