914 research outputs found

    Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing.

    Get PDF
    Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice

    Changing indications and socio-demographic determinants of (adeno)tonsillectomy among children in England--are they linked? A retrospective analysis of hospital data.

    Get PDF
    OBJECTIVE: To assess whether increased awareness and diagnosis of obstructive sleep apnoea syndrome (OSAS) and national guidance on tonsillectomy for recurrent tonsillitis have influenced the socio-demographic profile of children who underwent tonsillectomy over the last decade. METHOD: Retrospective time-trends study of Hospital Episodes Statistics data. We examined the age, sex and deprivation level, alongside OSAS diagnoses, among children aged <16 years who underwent (adeno)tonsillectomy in England between 2001/2 and 2011/12. RESULTS: Among children aged <16 years, there were 29,697 and 27,732 (adeno)tonsillectomies performed in 2001/2 and 2011/12, respectively. The median age at (adeno)tonsillectomy decreased from 7 (IQR: 5-11) to 5 (IQR: 4-9) years over the decade. (Adeno)tonsillectomy rates among children aged 4-15 years decreased by 14% from 350 (95%CI: 346-354) in 2001/2 to 300 (95%CI: 296-303) per 100,000 children in 2011/12. However, (adeno)tonsillectomy rates among children aged <4 years increased by 58% from 135 (95%CI: 131-140) to 213 (95%CI 208-219) per 100,000 children in 2001/2 and 2011/2, respectively. OSAS diagnoses among children aged <4 years who underwent surgery increased from 18% to 39% between these study years and the proportion of children aged <4 years with OSAS from the most deprived areas increased from 5% to 12%, respectively. CONCLUSIONS: (Adeno)tonsillectomy rates declined among children aged 4-15 years, which reflects national guidelines recommending the restriction of the operation to children with more severe recurrent throat infections. However, (adeno)tonsillectomy rates among pre-school children substantially increased over the past decade and one in five children undergoing the operation was aged <4 years in 2011/12.The increase in surgery rates in younger children is likely to have been driven by increased awareness and detection of OSAS, particularly among children from the most deprived areas

    Interpreting ambiguous ‘trace’ results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard

    Get PDF
    Background The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous ‘trace’ result between ‘positive’ and ‘negative’, and much debate has focused on interpretation of traces results. Methodology/Principle findings We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d’Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Conclusions Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    Integrated Polygenic Tool Substantially Enhances Coronary Artery Disease Prediction

    Get PDF
    BACKGROUND: There is considerable interest in whether genetic data can be used to improve standard cardiovascular disease risk calculators, as the latter are routinely used in clinical practice to manage preventative treatment. METHODS: Using the UK Biobank resource, we developed our own polygenic risk score for coronary artery disease (CAD). We used an additional 60 000 UK Biobank individuals to develop an integrated risk tool (IRT) that combined our polygenic risk score with established risk tools (either the American Heart Association/American College of Cardiology pooled cohort equations [PCE] or UK QRISK3), and we tested our IRT in an additional, independent set of 186 451 UK Biobank individuals. RESULTS: The novel CAD polygenic risk score shows superior predictive power for CAD events, compared with other published polygenic risk scores, and is largely uncorrelated with PCE and QRISK3. When combined with PCE into an IRT, it has superior predictive accuracy. Overall, 10.4% of incident CAD cases were misclassified as low risk by PCE and correctly classified as high risk by the IRT, compared with 4.4% misclassified by the IRT and correctly classified by PCE. The overall net reclassification improvement for the IRT was 5.9% (95% CI, 4.7–7.0). When individuals were stratified into age-by-sex subgroups, the improvement was larger for all subgroups (range, 8.3%–15.4%), with the best performance in 40- to 54-year-old men (15.4% [95% CI, 11.6–19.3]). Comparable results were found using a different risk tool (QRISK3) and also a broader definition of cardiovascular disease. Use of the IRT is estimated to avoid up to 12 000 deaths in the United States over a 5-year period. CONCLUSIONS: An IRT that includes polygenic risk outperforms current risk stratification tools and offers greater opportunity for early interventions. Given the plummeting costs of genetic tests, future iterations of CAD risk tools would be enhanced with the addition of a person’s polygenic risk

    SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy

    Get PDF
    Dysregulated autophagy is associated with steatosis and non-alcoholic fatty liver disease (NAFLD), however the mechanisms connecting them remain poorly understand. Here, we show that co-administration of lovastatin and ezetimibe (L/E) significantly reverses hepatic triglyceride accumulation concomitant with an increase in SREBP-2 driven autophagy in mice fed a high-fat diet (HFD). We further show that the statin mediated increase in SREBP-2 directly activates expression of patatin-like phospholipase domain-containing enzyme 8 (PNPLA8) gene, and PNPLA8 associates with autophagosomes and is associated with a decrease in cellular triglyceride. Moreover, we show that over-expression of PNPLA8 dramatically decreases hepatic steatosis through increased autophagy in hepatocytes of HFD-fed mice. Live-cell imaging analyses also reveal that PNPLA8 dynamically interacts with LC3 and we suggest that the SREBP-2/PNPLA8 axis represents a novel regulatory mechanism for lipid homeostasis. These data provide a possible mechanism for the reported beneficial effects of statins for decreasing hepatic triglyceride levels in NAFLD patients.ope

    A double epidemic model for the SARS propagation

    Get PDF
    BACKGROUND: An epidemic of a Severe Acute Respiratory Syndrome (SARS) caused by a new coronavirus has spread from the Guangdong province to the rest of China and to the world, with a puzzling contagion behavior. It is important both for predicting the future of the present outbreak and for implementing effective prophylactic measures, to identify the causes of this behavior. RESULTS: In this report, we show first that the standard Susceptible-Infected-Removed (SIR) model cannot account for the patterns observed in various regions where the disease spread. We develop a model involving two superimposed epidemics to study the recent spread of the SARS in Hong Kong and in the region. We explore the situation where these epidemics may be caused either by a virus and one or several mutants that changed its tropism, or by two unrelated viruses. This has important consequences for the future: the innocuous epidemic might still be there and generate, from time to time, variants that would have properties similar to those of SARS. CONCLUSION: We find that, in order to reconcile the existing data and the spread of the disease, it is convenient to suggest that a first milder outbreak protected against the SARS. Regions that had not seen the first epidemic, or that were affected simultaneously with the SARS suffered much more, with a very high percentage of persons affected. We also find regions where the data appear to be inconsistent, suggesting that they are incomplete or do not reflect an appropriate identification of SARS patients. Finally, we could, within the framework of the model, fix limits to the future development of the epidemic, allowing us to identify landmarks that may be useful to set up a monitoring system to follow the evolution of the epidemic. The model also suggests that there might exist a SARS precursor in a large reservoir, prompting for implementation of precautionary measures when the weather cools down

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    Detecting functional rare variants by collapsing and incorporating functional annotation in Genetic Analysis Workshop 17 mini-exome data

    Get PDF
    Association studies using tag SNPs have been successful in detecting disease-associated common variants. However, common variants, with rare exceptions, explain only at most 5–10% of the heritability resulting from genetic factors, which leads to the common disease/rare variants assumption. Indeed, recent studies using sequencing technologies have demonstrated that common diseases can be due to rare variants that could not be systematically studied earlier. Unfortunately, methods for common variants are not optimal if applied to rare variants. To identify rare variants that affect disease risk, several investigators have designed new approaches based on the idea of collapsing different rare variants inside the same genomic block (e.g., the same gene or pathway) to enrich the signal. Here, we consider three different collapsing methods in the multimarker regression model and compared their performance on the Genetic Analysis Workshop 17 data using the consistency of results across different simulations and the cross-validation prediction error rate. The comparison shows that the proportion collapsing method seems to outperform the other two methods and can find both truly associated rare and common variants. Moreover, we explore one way of incorporating the functional annotations for the variants in the data that collapses nonsynonymous and synonymous variants separately to allow for different penalties on them. The incorporation of functional annotations led to higher sensitivity and specificity levels when the detection results were compared with the answer sheet. The initial analysis was performed without knowledge of the simulating model
    corecore