175 research outputs found
Light Higgsino from Axion Dark Radiation
The recent observations imply that there is an extra relativistic degree of
freedom coined dark radiation. We argue that the QCD axion is a plausible
candidate for the dark radiation, not only because of its extremely small mass,
but also because in the supersymmetric extension of the Peccei-Quinn mechanism
the saxion tends to dominate the Universe and decays into axions with a sizable
branching fraction. We show that the Higgsino mixing parameter mu is bounded
from above when the axions produced at the saxion decays constitute the dark
radiation: mu \lesssim 300 GeV for a saxion lighter than 2m_W, and mu less than
the saxion mass otherwise. Interestingly, the Higgsino can be light enough to
be within the reach of LHC and/or ILC even when the other superparticles are
heavy with mass about 1 TeV or higher. We also estimate the abundance of axino
produced by the decays of Higgsino and saxion.Comment: 18 pages, 1 figure; published in JHE
The Effective Field Theory of Multifield Inflation
We generalize the Effective Field Theory of Inflation to include additional
light scalar degrees of freedom that are in their vacuum at the time the modes
of interest are crossing the horizon. In order to make the scalars light in a
natural way we consider the case where they are the Goldstone bosons of a
global symmetry group or are partially protected by an approximate
supersymmetry. We write the most general Lagrangian that couples the scalar
mode associated to the breaking of time translation during inflation to the
additional light scalar fields. This Lagrangian is constrained by
diffeomorphism invariance and the additional symmetries that keep the new
scalars light. This Lagrangian describes the fluctuations around the time of
horizon crossing and it is supplemented with a general parameterization
describing how the additional fluctuating fields can affect cosmological
perturbations. We find that multifield inflation can reproduce the
non-Gaussianities that can be generated in single field inflation but can also
give rise to new kinds of non-Gaussianities. We find several new three-point
function shapes. We show that in multifield inflation it is possible to
naturally suppress the three-point function making the four-point function the
leading source of detectable non-Gaussianities. We find that under certain
circumstances, i.e. if specific shapes of non-Gaussianities are detected in the
data, one could distinguish between single and multifield inflation and
sometimes even among the various mechanisms that kept the additional fields
light.Comment: 62 pages, 1 figure; v2: JHEP published version, minor corrections,
comments and references adde
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Effective theories of single field inflation when heavy fields matter
We compute the low energy effective field theory (EFT) expansion for
single-field inflationary models that descend from a parent theory containing
multiple other scalar fields. By assuming that all other degrees of freedom in
the parent theory are sufficiently massive relative to the inflaton, it is
possible to derive an EFT valid to arbitrary order in perturbations, provided
certain generalized adiabaticity conditions are respected. These conditions
permit a consistent low energy EFT description even when the inflaton deviates
off its adiabatic minimum along its slowly rolling trajectory. By generalizing
the formalism that identifies the adiabatic mode with the Goldstone boson of
this spontaneously broken time translational symmetry prior to the integration
of the heavy fields, we show that this invariance of the parent theory dictates
the entire non-perturbative structure of the descendent EFT. The couplings of
this theory can be written entirely in terms of the reduced speed of sound of
adiabatic perturbations. The resulting operator expansion is distinguishable
from that of other scenarios, such as standard single inflation or DBI
inflation. In particular, we re-derive how certain operators can become
transiently strongly coupled along the inflaton trajectory, consistent with
slow-roll and the validity of the EFT expansion, imprinting features in the
primordial power spectrum, and we deduce the relevant cubic operators that
imply distinct signatures in the primordial bispectrum which may soon be
constrained by observations.Comment: (v1) 25 pages, 1 figure; (v2) references added and typos corrected,
to appear in Journal of High Energy Physic
A geometric bound on F-term inflation
We discuss a general bound on the possibility to realise inflation in any
minimal supergravity with F-terms. The derivation crucially depends on the
sGoldstini, the scalar field directions that are singled out by spontaneous
supersymmetry breaking. The resulting bound involves both slow-roll parameters
and the geometry of the K\"ahler manifold of the chiral scalars. We analyse the
inflationary implications of this bound, and in particular discuss to what
extent the requirements of single field and slow-roll can both be met in F-term
inflation.Comment: 14 pages, improved analysis, references added, matches published
versio
String theoretic QCD axions in the light of PLANCK and BICEP2
The QCD axion solving the strong CP problem may originate from antisymmetric
tensor gauge fields in compactified string theory, with a decay constant around
the GUT scale. Such possibility appears to be ruled out now by the detection of
tensor modes by BICEP2 and the PLANCK constraints on isocurvature density
perturbations. A more interesting and still viable possibility is that the
string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry.
In such case, the axion decay constant can be much lower than the GUT scale if
moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and
U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to
a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern
of such models during the inflationary epoch with the Hubble expansion rate
10^{14} GeV, and identify the range of the QCD axion decay constant, as well as
the corresponding relic axion abundance, consistent with known cosmological
constraints. In addition to the case that the PQ symmetry is restored during
inflation, there are other viable scenarios, including that the PQ symmetry is
broken during inflation at high scales around 10^{16}-10^{17} GeV due to a
large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the
present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the
present value larger than 10^{12} GeV requires a fine-tuning of the axion
misalignment angle. We also discuss the implications of our results for the
size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full
anharmonic effects, references added, version accepted for publication in
JHE
MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology
We explore the implications of electroweak baryogenesis for future searches
for permanent electric dipole moments in the context of the minimal
supersymmetric extension of the Standard Model (MSSM). From a cosmological
standpoint, we point out that regions of parameter space that over-produce
relic lightest supersymmetric particles can be salvaged only by assuming a
dilution of the particle relic density that makes it compatible with the dark
matter density: this dilution must occur after dark matter freeze-out, which
ordinarily takes place after electroweak baryogenesis, implying the same degree
of dilution for the generated baryon number density as well. We expand on
previous studies on the viable MSSM regions for baryogenesis, exploring for the
first time an orthogonal slice of the relevant parameter space, namely the
(tan\beta, m_A) plane, and the case of non-universal relative gaugino-higgsino
CP violating phases. The main result of our study is that in all cases lower
limits on the size of the electric dipole moments exist, and are typically on
the same order, or above, the expected sensitivity of the next generation of
experimental searches, implying that MSSM electroweak baryogenesis will be soon
conclusively tested.Comment: 23 pages, 10 figures, matches version published in JHE
The Cosmic Microwave Background and Particle Physics
In forthcoming years, connections between cosmology and particle physics will
be made increasingly important with the advent of a new generation of cosmic
microwave background (CMB) experiments. Here, we review a number of these
links. Our primary focus is on new CMB tests of inflation. We explain how the
inflationary predictions for the geometry of the Universe and primordial
density perturbations will be tested by CMB temperature fluctuations, and how
the gravitational waves predicted by inflation can be pursued with the CMB
polarization. The CMB signatures of topological defects and primordial magnetic
fields from cosmological phase transitions are also discussed. Furthermore, we
review current and future CMB constraints on various types of dark matter (e.g.
massive neutrinos, weakly interacting massive particles, axions, vacuum
energy), decaying particles, the baryon asymmetry of the Universe,
ultra-high-energy cosmic rays, exotic cosmological topologies, and other new
physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc
Primordial Black Holes: sirens of the early Universe
Primordial Black Holes (PBHs) are, typically light, black holes which can
form in the early Universe. There are a number of formation mechanisms,
including the collapse of large density perturbations, cosmic string loops and
bubble collisions. The number of PBHs formed is tightly constrained by the
consequences of their evaporation and their lensing and dynamical effects.
Therefore PBHs are a powerful probe of the physics of the early Universe, in
particular models of inflation. They are also a potential cold dark matter
candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X.
Calmet (Springer, 2014
Axion monodromy in a model of holographic gluodynamics
The low energy field theory for N type IIA D4-branes at strong 't Hooft
coupling, wrapped on a circle with antiperiodic boundary conditions for
fermions, is known to have a vacuum energy which depends on the angle
for the gauge fields, and which is a multivalued function of this angle. This
gives a field-theoretic realization of "axion monodromy" for a nondynamical
axion. We construct the supergravity solution dual to the field theory in the
metastable state which is the adiabatic continuation of the vacuum to large
values of . We compute the energy of this state and show that it
initially rises quadratically and then flattens out. We show that the glueball
mass decreases with , becoming much lower than the 5d KK scale
governing the UV completion of this model. We construct two different classes
of domain walls interpolating between adjacent vacua. We identify a number of
instability modes -- nucleation of domain walls, bulk Casimir forces, and
condensation of tachyonic winding modes in the bulk -- which indicate that the
metastable branch eventually becomes unstable. Finally, we discuss two
phenomena which can arise when the axion is dynamical; axion-driven inflation,
and axion strings.Comment: 43 pages, 10 figures. v2: references update
- …