64 research outputs found

    Improved detection of Pneumocystis jirovecii in upper and lower respiratory tract specimens from children with suspected pneumocystis pneumonia using real-time PCR: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pneumocystis </it>pneumonia (PCP) is a major cause of hospitalization and mortality in HIV-infected African children. Microbiologic diagnosis relies predominantly on silver or immunofluorescent staining of a lower respiratory tract (LRT) specimens which are difficult to obtain in children. Diagnosis on upper respiratory tract (URT) specimens using PCR has been reported useful in adults, but data in children are limited. The main objectives of the study was (1) to compare the diagnostic yield of PCR with immunofluorescence (IF) and (2) to investigate the usefulness of upper compared to lower respiratory tract samples for diagnosing PCP in children.</p> <p>Methods</p> <p>Children hospitalised at an academic hospital with suspected PCP were prospectively enrolled. An upper respiratory sample (nasopharyngeal aspirate, NPA) and a lower respiratory sample (induced sputum, IS or bronchoalveolar lavage, BAL) were submitted for real-time PCR and direct IF for the detection of <it>Pneumocystis </it><it>jirovecii</it>. A control group of children with viral lower respiratory tract infections were investigated with PCR for PCP.</p> <p>Results</p> <p>202 children (median age 3.3 [inter-quartile range, IQR 2.2 - 4.6] months) were enrolled. The overall detection rate by PCR was higher than by IF [180/349 (52%) vs. 26/349 (7%) respectively; p < 0.0001]. PCR detected more infections compared to IF in lower respiratory tract samples [93/166 (56%) vs. 22/166 (13%); p < 0.0001] and in NPAs [87/183 (48%) vs. 4/183 (2%); p < 0.0001]. Detection rates by PCR on upper (87/183; 48%) compared with lower respiratory tract samples (93/166; 56%) were similar (OR, 0.71; 95% CI, 0.46 - 1.11). Only 2/30 (6.6%) controls were PCR positive.</p> <p>Conclusion</p> <p>Real-time PCR is more sensitive than IF for the detection of <it>P. jirovecii </it>in children with PCP. NPA samples may be used for diagnostic purposes when PCR is utilised. Wider implementation of PCR on NPA samples is warranted for diagnosing PCP in children.</p

    Longitudinal monitoring of Ehrlichia ruminantium infection in Gambian lambs and kids by pCS20 PCR and MAP1-B ELISA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiology of <it>E. ruminantium </it>infection in extensively managed young animals is not adequately understood. Thus in this study, we monitored the onset (age at first infection) and kinetics of <it>E. ruminantium </it>infection and antibody response in extensively managed newborn lambs and kids at three sites in The Gambia.</p> <p>Methods</p> <p>We used a nested pCS20 PCR and MAP1-B ELISA in a longitudinal study to monitor the onset (age at first infection) and kinetics of <it>E. ruminantium </it>infection and antibody response respectively, in 77 newborn lambs and kids under a traditional husbandry system at three sites (Kerr Seringe, Keneba, Bansang) in The Gambia where heartwater is known to occur. The animals were monitored for field tick infestation and the comparative performance of the two assays in detecting <it>E. ruminantium </it>infection was also assessed.</p> <p>Results</p> <p>The infection rate detected by pCS20 PCR varied between 8.6% and 54.8% over the 162-day study period. Nineteen per cent of the animals in week 1 post-partum tested positive by pCS20 PCR with half of these infections (7/14) detected in the first 3 days after birth, suggesting that transmission other than by tick feeding had played a role. The earliest detectable <it>A. variegatum </it>infestation in the animals occurred in week 16 after birth. Antibodies detected by MAP1-B ELISA also varied, between 11.5% and 90%. Although there is considerable evidence that this assay can detect false positives and due to this and other reasons serology is not a reliable predictor of infection at least for heartwater. In contrast to the pCS20 PCR, the serological assay detected the highest proportion of positive animals in week 1 with a gradual decline in seropositivity with increasing age. The pCS20 PCR detected higher <it>E. ruminantium </it>prevalence in the animals with increasing age and both the Spearman's rank test (<it>r</it><sub><it>s </it></sub>= -0.1512; P = 0.003) and <it>kappa </it>statistic (-0.091 to 0.223) showed a low degree of agreement between the two assays.</p> <p>Conclusion</p> <p>The use of pCS20 PCR supported by transmission studies and clinical data could provide more accurate information on heartwater epidemiology in endemic areas and single-occasion testing of an animal may not reveal its true infection status. The view is supported because both the vector and vertical transmission may play a vital role in the epidemiology of heartwater in young small ruminants; the age range of 4 and 12 weeks corresponds to the period of increased susceptibility to heartwater in traditionally managed small ruminants.</p

    Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions

    Get PDF
    Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis

    Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. I. Parasitological, Hematological and Pathological Parameters

    Get PDF
    African trypanosomiasis is a severe parasitic disease that affects both humans and livestock. Several different species may cause animal trypanosomosis and although Trypanosoma vivax (sub-genus Duttonella) is currently responsible for the vast majority of debilitating cases causing great economic hardship in West Africa and South America, little is known about its biology and interaction with its hosts. Relatively speaking, T. vivax has been more than neglected despite an urgent need to develop efficient control strategies. Some pioneering rodent models were developed to circumvent the difficulties of working with livestock, but disappointedly were for the most part discontinued decades ago. To gain more insight into the biology of T. vivax, its interactions with the host and consequently its pathogenesis, we have developed a number of reproducible murine models using a parasite isolate that is infectious for rodents. Firstly, we analyzed the parasitical characteristics of the infection using inbred and outbred mouse strains to compare the impact of host genetic background on the infection and on survival rates. Hematological studies showed that the infection gave rise to severe anemia, and histopathological investigations in various organs showed multifocal inflammatory infiltrates associated with extramedullary hematopoiesis in the liver, and cerebral edema. The models developed are consistent with field observations and pave the way for subsequent in-depth studies into the pathogenesis of T. vivax - trypanosomosis

    HIV-1 Residual Viremia Correlates with Persistent T-Cell Activation in Poor Immunological Responders to Combination Antiretroviral Therapy

    Get PDF
    BACKGROUND:The clinical significance and cellular sources of residual human immunodeficiency virus type 1 (HIV-1) production despite suppressive combination antiretroviral therapy (cART) remain unclear and the effect of low-level viremia on T-cell homeostasis is still debated. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the recently produced residual viruses in the plasma and short-lived blood monocytes of 23 patients with various immunological responses to sustained suppressive cART. We quantified the residual HIV-1 in the plasma below 50 copies/ml, and in the CD14(high) CD16(-) and CD16+ monocyte subsets sorted by flow cytometry, and predicted coreceptor usage by genotyping V3 env sequences. We detected residual viremia in the plasma of 8 of 10 patients with poor CD4+ T-cell reconstitution in response to cART and in only 5 of 13 patients with good CD4+ T-cell reconstitution. CXCR4-using viruses were frequent among the recently produced viruses in the plasma and in the main CD14(high) CD16(-) monocyte subset. Finally, the residual viremia was correlated with persistent CD4+ and CD8+ T-cell activation in patients with poor immune reconstitution. CONCLUSIONS:Low-level viremia could result from the release of archived viruses from cellular reservoirs and/or from ongoing virus replication in some patients. The compartmentalization of the viruses between the plasma and the blood monocytes suggests at least two origins of residual virus production during effective cART. CXCR4-using viruses might be produced preferentially in patients on cART. Our results also suggest that low-level HIV-1 production in some patients may contribute to persistent immune dysfunction despite cART

    NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease

    Get PDF
    Extent: 14p.Background: Without appropriate cellular models the etiology of idiopathic Parkinson’s disease remains unknown. We recently reported a novel patient-derived cellular model generated from biopsies of the olfactory mucosa (termed olfactory neurosphere-derived (hONS) cells) which express functional and genetic differences in a disease-specific manner. Transcriptomic analysis of Patient and Control hONS cells identified the NRF2 transcription factor signalling pathway as the most differentially expressed in Parkinson’s disease. Results: We tested the robustness of our initial findings by including additional cell lines and confirmed that hONS cells from Patients had 20% reductions in reduced glutathione levels and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to cultures from healthy Control donors. We also confirmed that Patient hONS cells are in a state of oxidative stress due to higher production of H2O2 than Control cultures. siRNA-mediated ablation of NRF2 in Control donor cells decreased both total glutathione content and MTS metabolism to levels detected in cells from Parkinson’s Disease patients. Conversely, and more importantly, we showed that activation of the NRF2 pathway in Parkinson’s disease hONS cultures restored glutathione levels and MTS metabolism to Control levels. Paradoxically, transcriptomic analysis after NRF2 pathway activation revealed an increased number of differentially expressed mRNAs within the NRF2 pathway in L-SUL treated Patient-derived hONS cells compared to L-SUL treated Controls, even though their metabolism was restored to normal. We also identified differential expression of the PI3K/AKT signalling pathway, but only post-treatment. Conclusions: Our results confirmed NRF2 as a potential therapeutic target for Parkinson’s disease and provided the first demonstration that NRF2 function was inducible in Patient-derived cells from donors with uniquely varied genetic backgrounds. However, our results also demonstrated that the response of PD patient-derived cells was not co-ordinated in the same way as in Control cells. This may be an important factor when developing new therapeutics.Anthony L. Cook, Alejandra M. Vitale, Sugandha Ravishankar, Nicholas Matigian, Greg T. Sutherland, Jiangou Shan, Ratneswary Sutharsan, Chris Perry, Peter A. Silburn, George D. Mellick, Murray L. Whitelaw, Christine A. Wells, Alan Mackay-Sim and Stephen A. Woo

    An animal model to evaluate the function and regulation of the adaptively evolving stress protein SEP53 in oesophageal bile damage responses

    Get PDF
    Squamous epithelium in mammals has evolved an atypical stress response involving down-regulation of the classic HSP70 protein and induction of sets of proteins including one named SEP53. This atypical stress response might be due to the unusual environmental pressures placed on squamous tissue. In fact, SEP53 plays a role as an anti-apoptotic factor in response to DNA damage induced by deoxycholic acid stresses implicated in oesophageal reflux disease. SEP53 also has a genetic signature characteristic of an adaptively and rapidly evolving gene, and this observation has been used to imply a role for SEP53 in immunity. Physiological models of squamous tissue are required to further define the regulation and function of SEP53. We examined whether porcine squamous epithelium would be a good model to study SEP53, since this animal suffers from a bile-reflux disease in squamous oesophageal tissue. We have (1) cloned and sequenced the porcine SEP53 locus from porcine bacterial artificial chromosome genomic DNA, (2) confirmed the strikingly divergent nature of the C-terminal portion of the SEP53 gene amongst mammals, (3) discovered that a function of the conserved N-terminal domain of the gene is to maintain cytoplasmic localisation, and (4) examined SEP53 expression in normal and diseased porcine pars oesophagea. SEP53 expression in porcine tissue was relatively confined to gastric squamous epithelium, consistent with its expression in normal human squamous epithelium. Immunohistochemical staining for SEP53 protein in normal and damaged pars oesophagea demonstrated significant stabilisation of SEP53 protein in the injured tissue. These results suggest that porcine squamous epithelium would be a robust physiological model to examine the evolution and function of the SEP53 stress pathway in modulating stress-induced responses in squamous tissue

    Serum biochemical parameters and cytokine profiles associated with natural African trypanosome infections in cattle.

    Get PDF
    BACKGROUND: Animal African trypanosomiasis (AAT) greatly affects livestock production in sub-Saharan Africa. In Ghana prevalence of AAT is estimated to range between 5 and 50%. Studies have reported serum biochemical aberrations and variability in cytokine profiles in animals during infection. However, information regarding the biochemical parameters and cytokine profiles associated with natural infections are limited. This study was therefore aimed at investigating changes in the levels of serum biochemical parameters and inflammatory cytokines during a natural infection. METHODS: Nested internal transcribed spacer (ITS)-based PCR and sequencing were used to characterise trypanosome infection in cattle at two areas in Ghana (Adidome and Accra) of different endemicities. The cattle were sampled at four to five-week intervals over a period of six months. Levels of serum biochemical parameters, including creatinine, cholesterol, alkaline phosphatase (ALP), alanine aminotransferase (ALT), total bilirubin and total protein and cytokines (interleukin 10, interleukin 4, interleukin 12, interferon gamma and tumor necrosis factor alpha) were measured in serum samples and then compared between infected cattle and uninfected controls. RESULTS: The predominant trypanosome species detected in Accra (non-endemic) and Adidome (endemic) were Trypanosoma theileri and Trypanosoma vivax, respectively. Serum biochemical parameters were similar between infected and uninfected cattle in Accra. Infected cattle at Adidome however, had significantly higher levels of ALP, creatinine, total protein and total bilirubin (P < 0.05) and significantly lower levels of cholesterol (P < 0.05) at specific time points. At basal levels and during infection, significantly higher pro-inflammatory to anti-inflammatory (Th1/Th2) cytokine ratios were observed in cattle at Adidome compared to Accra (P < 0.05), indicating a shift towards Th1 immune response in Adidome. Levels of IL-10 were, however, significantly elevated in infected cattle in Accra (P < 0.05), suggesting high anti-inflammatory cytokine response in Accra. CONCLUSION: These results suggests that cattle in an endemic area repeatedly infected with trypanosomes of different species or different antigenic types demonstrate high pro-inflammatory (Th1) immune response and biochemical alterations whereas cattle in a non-endemic area with predominantly chronic T. theileri infections demonstrate high anti-inflammatory response and no biochemical alterations
    corecore