6,392 research outputs found
Comprehensive Characterization of the Transmitted/Founder env Genes From a Single MSM Cohort in China
Background: The men having sex with men (MSM) population has become one of the major risk groups for HIV-1 infection in China. However, the epidemiological patterns, function of the env genes, and autologous and heterologous neutralization activity in the same MSM population have not been systematically characterized. Methods: The env gene sequences were obtained by the single genome amplification. The time to the most recent common ancestor was estimated for each genotype using the Bayesian Markov Chain Monte Carlo approach. Coreceptor usage was determined in NP-2 cells. Neutralization was analyzed using Env pseudoviruses in TZM-bl cells. Results: We have obtained 547 full-length env gene sequences by single genome amplification from 30 acute/early HIV-1–infected individuals in the Beijing MSM cohort. Three genotypes (subtype B, CRF01_AE, and CRF07_BC) were identified and 20% of the individuals were infected with multiple transmitted/founder (T/F) viruses. The tight clusters of the MSM sequences regardless of geographic origins indicated nearly exclusive transmission within the MSM population and limited number of introductions. The time to the most recent common ancestor for each genotype was 10–15 years after each was first introduced in China. Disparate preferences for coreceptor usages among 3 genotypes might lead to the changes in percentage of different genotypes in the MSM population over time. The genotype-matched and genotype-mismatched neutralization activity varied among the 3 genotypes. Conclusions: The identification of unique characteristics for transmission, coreceptor usage, neutralization profile, and epidemic patterns of HIV-1 is critical for the better understanding of transmission mechanisms, development of preventive strategies, and evaluation of vaccine efficacy in the MSM population in China
Science Models as Value-Added Services for Scholarly Information Systems
The paper introduces scholarly Information Retrieval (IR) as a further
dimension that should be considered in the science modeling debate. The IR use
case is seen as a validation model of the adequacy of science models in
representing and predicting structure and dynamics in science. Particular
conceptualizations of scholarly activity and structures in science are used as
value-added search services to improve retrieval quality: a co-word model
depicting the cognitive structure of a field (used for query expansion), the
Bradford law of information concentration, and a model of co-authorship
networks (both used for re-ranking search results). An evaluation of the
retrieval quality when science model driven services are used turned out that
the models proposed actually provide beneficial effects to retrieval quality.
From an IR perspective, the models studied are therefore verified as expressive
conceptualizations of central phenomena in science. Thus, it could be shown
that the IR perspective can significantly contribute to a better understanding
of scholarly structures and activities.Comment: 26 pages, to appear in Scientometric
Wigner Crystallization in a Quasi-3D Electronic System
When a strong magnetic field is applied perpendicularly (along z) to a sheet
confining electrons to two dimensions (x-y), highly correlated states emerge as
a result of the interplay between electron-electron interactions, confinement
and disorder. These so-called fractional quantum Hall (FQH) liquids form a
series of states which ultimately give way to a periodic electron solid that
crystallizes at high magnetic fields. This quantum phase of electrons has been
identified previously as a disorder-pinned two-dimensional Wigner crystal with
broken translational symmetry in the x-y plane. Here, we report our discovery
of a new insulating quantum phase of electrons when a very high magnetic field,
up to 45T, is applied in a geometry parallel (y-direction) to the
two-dimensional electron sheet. Our data point towards this new quantum phase
being an electron solid in a "quasi-3D" configuration induced by orbital
coupling with the parallel field
Dust-free quasars in the early Universe
The most distant quasars known, at redshifts z=6, generally have properties
indistinguishable from those of lower-redshift quasars in the rest-frame
ultraviolet/optical and X-ray bands. This puzzling result suggests that these
distant quasars are evolved objects even though the Universe was only seven per
cent of its current age at these redshifts. Recently one z=6 quasar was shown
not to have any detectable emission from hot dust, but it was unclear whether
that indicated different hot-dust properties at high redshift or if it is
simply an outlier. Here we report the discovery of a second quasar without
hot-dust emission in a sample of 21 z=6 quasars. Such apparently hot-dust-free
quasars have no counterparts at low redshift. Moreover, we demonstrate that the
hot-dust abundance in the 21 quasars builds up in tandem with the growth of the
central black hole, whereas at low redshift it is almost independent of the
black hole mass. Thus z=6 quasars are indeed at an early evolutionary stage,
with rapid mass accretion and dust formation. The two hot-dust-free quasars are
likely to be first-generation quasars born in dust-free environments and are
too young to have formed a detectable amount of hot dust around them.Comment: To be published in Nature on the 18 March 2010
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
New Fe-based superconductors: properties relevant for applications
Less than two years after the discovery of high temperature superconductivity
in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe
layers (1111, 122, 11, 111) are available. They share several characteristics
with cuprate superconductors that compromise easy applications, such as the
layered structure, the small coherence length, and unconventional pairing, On
the other hand the Fe-based superconductors have metallic parent compounds, and
their electronic anisotropy is generally smaller and does not strongly depend
on the level of doping, the supposed order parameter symmetry is s wave, thus
in principle not so detrimental to current transmission across grain
boundaries. From the application point of view, the main efforts are still
devoted to investigate the superconducting properties, to distinguish intrinsic
from extrinsic behaviours and to compare the different families in order to
identify which one is the fittest for the quest for better and more practical
superconductors. The 1111 family shows the highest Tc, huge but also the most
anisotropic upper critical field and in-field, fan-shaped resistive transitions
reminiscent of those of cuprates, while the 122 family is much less anisotropic
with sharper resistive transitions as in low temperature superconductors, but
with about half the Tc of the 1111 compounds. An overview of the main
superconducting properties relevant to applications will be presented. Upper
critical field, electronic anisotropy parameter, intragranular and
intergranular critical current density will be discussed and compared, where
possible, across the Fe-based superconductor families
Smooth Pursuit Eye Movements Improve Temporal Resolution for Color Perception
Human observers see a single mixed color (yellow) when different colors (red and green) rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories) on the retina that normally causes retinal blur during fixation
Observation of the Fractional Quantum Hall Effect in Graphene
When electrons are confined in two dimensions and subjected to strong
magnetic fields, the Coulomb interactions between them become dominant and can
lead to novel states of matter such as fractional quantum Hall liquids. In
these liquids electrons linked to magnetic flux quanta form complex composite
quasipartices, which are manifested in the quantization of the Hall
conductivity as rational fractions of the conductance quantum. The recent
experimental discovery of an anomalous integer quantum Hall effect in graphene
has opened up a new avenue in the study of correlated 2D electronic systems, in
which the interacting electron wavefunctions are those of massless chiral
fermions. However, due to the prevailing disorder, graphene has thus far
exhibited only weak signatures of correlated electron phenomena, despite
concerted experimental efforts and intense theoretical interest. Here, we
report the observation of the fractional quantum Hall effect in ultraclean
suspended graphene, supporting the existence of strongly correlated electron
states in the presence of a magnetic field. In addition, at low carrier density
graphene becomes an insulator with an energy gap tunable by magnetic field.
These newly discovered quantum states offer the opportunity to study a new
state of matter of strongly correlated Dirac fermions in the presence of large
magnetic fields
Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor
Alkali-doped iron selenide is the latest member of high Tc superconductor
family, and its peculiar characters have immediately attracted extensive
attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2)
thin films by molecular beam epitaxy and unambiguously demonstrated the
existence of phase separation, which is currently under debate, in this
material using scanning tunneling microscopy and spectroscopy. The
stoichiometric superconducting phase KFe2Se2 contains no iron vacancies, while
the insulating phase has a \surd5\times\surd5 vacancy order. The iron vacancies
are shown always destructive to superconductivity in KFe2Se2. Our study on the
subgap bound states induced by the iron vacancies further reveals a
magnetically-related bipartite order in the superconducting phase. These
findings not only solve the existing controversies in the atomic and electronic
structures in KxFe2-ySe2, but also provide valuable information on
understanding the superconductivity and its interplay with magnetism in
iron-based superconductors
Complete Genome Sequence of the Oral Spirochete Bacterium Treponema putidum Strain OMZ 758T (ATCC 700334T)
The oral spirochete bacterium Treponema putidum inhabits human periodontal niches. The complete genome sequence of the OMZ 758(T) (ATCC 700334(T)) strain of this species was determined, revealing a 2,796,913-bp chromosome, with a G+C content of 37.30% and a single plasmid (pTPu1; 3,649 bp) identical to pTS1 from Treponema denticola
- …