30,604 research outputs found

    Effects of state recovery on creep buckling under variable loading

    Get PDF
    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time

    Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    Get PDF
    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented

    Tight focal spots using azimuthally polarised light from a Fresnel cone

    Get PDF
    When focusing a light beam at high numerical aperture, the resulting electric field profile in the focal plane depends on the transverse polarisation profile, as interference between different parts of the beam needs to be taken into account. It is well known that radial polarised light produces a longitudinal polarisation component and can be focused below the conventional diffraction limit for homogeneously polarised light, and azimuthally polarised light that carries one unit of angular momentum can achieve even tighter focal spots. This is of interest for example for enhancing resolution in scanning microscopy. There are numerous ways to generate such polarisation structures, however, setups can be expensive and usually rely on birefringent components, hence prohibiting broadband operation. We have recently demonstrated a passive, low-cost technique using a simple glass cone (Fresnel cone) to generate beams with structured polarisation. We show here that the polarisation structure generated by Fresnel cones focuses better than radial polarised light at all numerical apertures. Furthermore, we investigate in detail the application of polarised light structures for two-photon microscopy. Specifically we demonstrate a method that allows us to generate the desired polarisation structure at the back aperture of the microscope by pre-compensating any detrimental phase shifts using a combination of waveplates

    Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein condensates

    Full text link
    We theoretically investigate an adjustable-radius magnetic storage ring for laser-cooled and Bose-condensed atoms. Additionally, we discuss a novel time-dependent variant of this and other ring traps. Time-orbiting ring traps provide a high optical access method for spin-flip loss prevention near a storage ring's circular magnetic field zero. Our scalable storage ring will allow one to probe the fundamental limits of condensate Sagnac interferometry.Comment: 5 pages, 3 figures. accepted in J Phys

    Investigation of double beta decay with the NEMO-3 detector

    Full text link
    The double beta decay experiment NEMO~3 has been taking data since February 2003. The aim of this experiment is to search for neutrinoless (0νββ0\nu\beta\beta) decay and investigate two neutrino double beta decay in seven different isotopically enriched samples (100^{100}Mo, 82^{82}Se, 48^{48}Ca, 96^{96}Zr, 116^{116}Cd, 130^{130}Te and 150^{150}Nd). After analysis of the data corresponding to 3.75 y, no evidence for 0νββ0\nu\beta\beta decay in the 100^{100}Mo and 82^{82}Se samples was found. The half-life limits at the 90% C.L. are 1.110241.1\cdot 10^{24} y and 3.610233.6\cdot 10^{23} y, respectively. Additionally for 0νββ0\nu\beta\beta decay the following limits at the 90% C.L. were obtained, >1.31022> 1.3 \cdot 10^{22} y for 48^{48}Ca, >9.21021> 9.2 \cdot 10^{21} y for 96^{96}Zr and >1.81022> 1.8 \cdot 10^{22} y for 150^{150}Nd. The 2νββ2\nu\beta\beta decay half-life values were precisely measured for all investigated isotopes.Comment: 12 pages, 4 figures, 5 tables; talk at conference on "Fundamental Interactions Physics" (ITEP, Moscow, November 23-27, 2009

    Unified Viscoplastic Behavior of Metal Matrix Composites

    Get PDF
    The need for unified constitutive models was recognized more than a decade ago in the results of phenomenological tests on monolithic metals that exhibited strong creep-plasticity interaction. Recently, metallic alloys have been combined to form high-temperature ductile/ductile composite materials, raising the natural question of whether these metallic composites exhibit the same phenomenological features as their monolithic constituents. This question is addressed in the context of a limited, yet definite (to illustrate creep/plasticity interaction) set of experimental data on the model metal matrix composite (MMC) system W/Kanthal. Furthermore, it is demonstrated that a unified viscoplastic representation, extended for unidirectional composites and correlated to W/Kanthal, can accurately predict the observed longitudinal composite creep/plasticity interaction response and strain rate dependency. Finally, the predicted influence of fiber orientation on the creep response of W/Kanthal is illustrated

    Looking for CP Violation in W Production and Decay

    Full text link
    We describe CP violating observables in resonant W±W^\pm and W±W^\pm plus one jet production at the Tevatron. We present simple examples of CP violating effective operators, consistent with the symmetries of the Standard Model, which would give rise to these observables. We find that CP violating effects coming from new physics at the TeVTeV scale could in principle be observable at the Tevatron with 10610^6 W±W^\pm decays.Comment: 15 pgs with standard LATEX, 7 ps figures embedded with eps
    corecore