22,293 research outputs found

    Aging and Rejuvenation with Fractional Derivatives

    Full text link
    We discuss a dynamic procedure that makes the fractional derivatives emerge in the time asymptotic limit of non-Poisson processes. We find that two-state fluctuations, with an inverse power-law distribution of waiting times, finite first moment and divergent second moment, namely with the power index mu in the interval 2<mu <3, yields a generalized master equation equivalent to the sum of an ordinary Markov contribution and of a fractional derivative term. We show that the order of the fractional derivative depends on the age of the process under study. If the system is infinitely old, the order of the fractional derivative, ord, is given by ord=3-mu . A brand new system is characterized by the degree ord=mu -2. If the system is prepared at time -ta<0$ and the observation begins at time t=0, we derive the following scenario. For times 0<t<<ta the system is satisfactorily described by the fractional derivative with ord=3-mu . Upon time increase the system undergoes a rejuvenation process that in the time limit t>>ta yields ord=mu -2. The intermediate time regime is probably incompatible with a picture based on fractional derivatives, or, at least, with a mono-order fractional derivative.Comment: 11 pages, 4 figure

    Alignments of the Dominant Galaxies in Poor Clusters

    Get PDF
    We have examined the orientations of brightest cluster galaxies (BCGs) in poor MKW and AWM clusters and find that, like their counterparts in richer Abell clusters, poor cluster BCGs exhibit a strong propensity to be aligned with the principal axes of their host clusters as well as the surrounding distribution of nearby (< 20/h Mpc) Abell clusters. The processes responsible for dominant galaxy alignments are therefore independent of cluster richness. We argue that these alignments most likely arise from anisotropic infall of material into clusters along large-scale filaments.Comment: 8 pages, 5 figure

    Asymptotic Freedom and Bound States in Hamiltonian Dynamics

    Full text link
    We study a model of asymptotically free theories with bound states using the similarity renormalization group for hamiltonians. We find that the renormalized effective hamiltonians can be approximated in a large range of widths by introducing similarity factors and the running coupling constant. This approximation loses accuracy for the small widths on the order of the bound state energy and it is improved by using the expansion in powers of the running coupling constant. The coupling constant for small widths is order 1. The small width effective hamiltonian is projected on a small subset of the effective basis states. The resulting small matrix is diagonalized and the exact bound state energy is obtained with accuracy of the order of 10% using the first three terms in the expansion. We briefly describe options for improving the accuracy.Comment: plain latex file, 15 pages, 6 latex figures 1 page each, 1 tabl

    WASP-189b: an ultra-hot Jupiter transiting the bright A star HR 5599 in a polar orbit

    Full text link
    We report the discovery of WASP-189b: an ultra-hot Jupiter in a 2.72-d transiting orbit around the V=6.6V = 6.6 A star WASP-189 (HR 5599). We detected periodic dimmings in the star's lightcurve, first with the WASP-South survey facility then with the TRAPPIST-South telescope. We confirmed that a planet is the cause of those dimmings via line-profile tomography and radial-velocity measurements using the HARPS and CORALIE spectrographs. Those reveal WASP-189b to be an ultra-hot Jupiter (MPM_{\rm P} = 2.13 ±\pm 0.28 MJupM_{\rm Jup}; RPR_{\rm P} = 1.374 ±\pm 0.082 RJupR_{\rm Jup}) in a polar orbit (λ=89.3±1.4\lambda = 89.3 \pm 1.4^\circ; Ψ=90.0±5.8\Psi = 90.0 \pm 5.8^\circ) around a rapidly rotating A6IV-V star (TeffT_{\rm eff} = 8000 ±\pm 100 K; vsiniv_* \sin i_* \approx 100 km\, s1^{-1}). We calculate a predicted equilibrium temperature of TeqlT_{\rm eql} = 2641 ±\pm 34 K, assuming zero albedo and efficient redistribution, which is the third hottest for the known exoplanets. WASP-189 is the brightest known host of a transiting hot Jupiter and the third-brightest known host of any transiting exoplanet. We note that of the eight hot-Jupiter systems with TeffT_{\rm eff} >> 7000 K, seven have strongly misaligned orbits, and two of the three systems with TeffT_{\rm eff} \geq 8000 K have polar orbits (the third is aligned).Comment: Submitted to MNRAS. 10 pages, 9 figures, 3 table

    WASP-29b: A Saturn-sized transiting exoplanet

    Full text link
    We report the discovery of a Saturn-sized planet transiting a V = 11.3, K4 dwarf star every 3.9 d. WASP-29b has a mass of 0.24+/-0.02 M_Jup and a radius of 0.79+/-0.05 R_Jup, making it the smallest planet so far discovered by the WASP survey, and the exoplanet most similar in mass and radius to Saturn. The host star WASP-29 has an above-Solar metallicity and fits a possible correlation for Saturn-mass planets such that planets with higher-metallicity host stars have higher core masses and thus smaller radii.Comment: 6 pages, submitted to ApJ

    Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    Full text link
    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles

    Supersymmetric Distributions, Hilbert Spaces of Supersymmetric Functions and Quantum Fields

    Full text link
    The recently investigated Hilbert-Krein and other positivity structures of the superspace are considered in the framework of superdistributions. These tools are applied to problems raised by the rigorous supersymmetric quantum field theory.Comment: 24 page

    A low-density hot Jupiter in a near-aligned, 4.5-day orbit around a VV = 10.8, F5V star

    Full text link
    We report the independent discovery and characterisation of a hot Jupiter in a 4.5-d, transiting orbit around the star TYC 7282-1298-1 (VV = 10.8, F5V). The planet has been pursued by the NGTS team as NGTS-2b and by ourselves as WASP-179b. We characterised the system using a combination of photometry from WASP-South and TRAPPIST-South, and spectra from CORALIE (around the orbit) and HARPS (through the transit). We find the planet's orbit to be nearly aligned with its star's spin. From a detection of the Rossiter-McLaughlin effect, we measure a projected stellar obliquity of λ=19±6\lambda = -19 \pm 6^\circ. From line-profile tomography of the same spectra, we measure λ=11±5\lambda = -11 \pm 5^\circ. We find the planet to have a low density (MPM_{\rm P} = 0.67 ±\pm 0.09 MJupM_{\rm Jup}, RPR_{\rm P} = 1.54 ±\pm 0.06 RJupR_{\rm Jup}), which, along with its moderately bright host star, makes it a good target for transmission spectroscopy. We find a lower stellar mass (MM_* = 1.30±0.071.30 \pm 0.07 MM_\odot) than reported by the NGTS team (MM_* = 1.64±0.211.64 \pm 0.21 MM_\odot), though the difference is only 1.51.5 σ\sigma.Comment: Submitted to AJ. 9 pages, 6 figures, 5 table

    Transiting hot Jupiters from WASP-South, Euler and TRAPPIST : WASP-95b to WASP-101b

    Get PDF
    We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b andWASP-101b. All are hot Jupiters with orbital periods in the range 2.1-5.7 d, masses of 0.5-2.8 MJup and radii of 1.1-1.4 RJup. The orbits of all the planets are compatible with zero eccentricity. WASP-99b produces the shallowest transit yet found by WASP-South, at 0.4 per cent. The host stars are of spectral type F2-G8. Five have metallicities of [Fe/H] from -0.03 to +0.23, while WASP-98 has a metallicity of -0.60, exceptionally low for a star with a transiting exoplanet. Five of the host stars are brighter than V = 10.8, which significantly extends the number of bright transiting systems available for follow-up studies. WASP-95 shows a possible rotational modulation at a period of 20.7 d. We discuss the completeness of WASP survey techniques by comparing to the HATnet project.Publisher PDFPeer reviewe
    corecore