41 research outputs found

    OPTIMIZATION OF SURFACE ROUGHNESS OF AISI 304 AUSTENITIC STAINLESS STEEL IN DRY TURNING OPERATION USING TAGUCHI DESIGN METHOD

    Get PDF
    The present work is concentrated with the dry turning of AISI 304 Austenitic Stainless Steel (ASS). This paper presents the influence of cutting parameters like cutting speed, feed rate and depth of cut on the surface roughness of austenitic stainless steel during dry turning. A plan of experiments based on Taguchi’s technique has been used to acquire the data. An orthogonal array, the signal to noise (S/N) ratio and the analysis of variance (ANOVA) are employed to investigate the cutting characteristics of AISI 304 austenitic stainless steel bars using TiC and TiCN coated tungsten carbide cutting tool. Finally the confirmation tests that have been carried out to compare the predicted values with the experimental values confirm its effectiveness in the analysis of surface roughness

    EXPERIMENTAL INVESTIGATIONS OF NITROGEN ALLOYED DUPLEX STAINLESS STEEL IN DRY MILLING PROCESS

    Get PDF
    Duplex stainless steels are generally more difficult to cut because of their high toughness, low heat conductivity, more strain hardening rate and more built-up edge formation. Milling is an important machining process for manufacturing flat, curved and profiled surfaces. In this work, an attempt has been taken to investigate the machining performance of two different types of cast duplex stainless steels in dry milling operation using coated tungsten carbide tools. A 15 run experiment was designed to investigate the effect of spindle speed and feed rate on the surface roughness and cutting force. The end milling experiments were conducted with five different spindle speeds and three different feed rates with a constant axial depth of cut. The result revealed that the increasing spindle speed decreased the surface roughness and the cutting force values up to 1000 rpm and then increased. The increase of feed rate increased the surface roughness and cutting force values. The presence of higher austenite in 5A grade duplex stainless steel was responsible for higher surface roughness and cutting force values compared with 4A grade duplex stainless steel

    C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility

    Get PDF
    A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.</p

    C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility

    Get PDF
    A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.</p

    A leaky umbrella has little value: evidence clearly indicates the serotonin system is implicated in depression.

    Get PDF
    A recent “umbrella” review examined various biomarkers relating to the serotonin system, and concluded there was no consistent evidence implicating serotonin in the pathophysiology of depression. We present reasons for why this conclusion is overstated, including methodological weaknesses in the review process, selective reporting of data, over-simplification, and errors in the interpretation of neuropsychopharmacological findings. We use the examples of tryptophan depletion and serotonergic molecular imaging, the two research areas most relevant to the investigation of serotonin, to illustrate this

    A leaky umbrella has little value:evidence clearly indicates the serotonin system is implicated in depression

    Get PDF
    A recent “umbrella” review examined various biomarkers relating to the serotonin system, and concluded there was no consistent evidence implicating serotonin in the pathophysiology of depression. We present reasons for why this conclusion is overstated, including methodological weaknesses in the review process, selective reporting of data, over-simplification, and errors in the interpretation of neuropsychopharmacological findings. We use the examples of tryptophan depletion and serotonergic molecular imaging, the two research areas most relevant to the investigation of serotonin, to illustrate this

    Syntaxin 5 Is Required for Copper Homeostasis in Drosophila and Mammals

    Get PDF
    Copper is essential for aerobic life, but many aspects of its cellular uptake and distribution remain to be fully elucidated. A genome-wide screen for copper homeostasis genes in Drosophila melanogaster identified the SNARE gene Syntaxin 5 (Syx5) as playing an important role in copper regulation; flies heterozygous for a null mutation in Syx5 display increased tolerance to high dietary copper. The phenotype is shown here to be due to a decrease in copper accumulation, a mechanism also observed in both Drosophila and human cell lines. Studies in adult Drosophila tissue suggest that very low levels of Syx5 result in neuronal defects and lethality, and increased levels also generate neuronal defects. In contrast, mild suppression generates a phenotype typical of copper-deficiency in viable, fertile flies and is exacerbated by co-suppression of the copper uptake gene Ctr1A. Reduced copper uptake appears to be due to reduced levels at the plasma membrane of the copper uptake transporter, Ctr1. Thus Syx5 plays an essential role in copper homeostasis and is a candidate gene for copper-related disease in humans

    A Network of Conserved Damage Survival Pathways Revealed by a Genomic RNAi Screen

    Get PDF
    Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS–induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into “pathway nodes” qualitatively improved the interactome organization, revealing a highly organized “MMS survival network.” We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis

    Interleukin 12B (IL12B) Genetic Variation and Pulmonary Tuberculosis: A Study of Cohorts from The Gambia, Guinea-Bissau, United States and Argentina

    Get PDF
    We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one insertion/deletion, one microsatellite) were analyzed in 321 PTB cases and 346 controls from Guinea-Bissau and 280 PTB cases and 286 controls from The Gambia. For replication we studied 281 case and 179 control African-American samples and 221 cases and 144 controls of European ancestry from the US and Argentina. First-stage single locus analyses revealed signals of association at IL12B 3′ UTR SNP rs3212227 (unadjusted allelic p = 0.04; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–0.99]) in Guinea-Bissau and rs11574790 (unadjusted allelic p = 0.05; additive genotypic p = 0.05, OR = 0.76, 95% CI [0.58–1.00]) in The Gambia. Association of rs3212227 was then replicated in African-Americans (rs3212227 allelic p = 0.002; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–1.00]); most importantly, in the African-American cohort, multiple significant signals of association (seven of the nine polymorphisms tested) were detected throughout the gene. These data suggest that genetic variation in IL12B, a highly relevant candidate gene, is a risk factor for PTB in populations of African ancestry, although further studies will be required to confirm this association and identify the precise mechanism underlying it
    corecore