8,142 research outputs found

    Testing a Quantum Computer

    Get PDF
    The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package generates test plans for arbitrary quantum circuits using the very efficient simulator QuIDDPro[1]. The quantum fault table is introduced and mathematically formalized, and the test generation method explained.Comment: 15 pages, 17 equations, 27 tables, 8 figure

    On Series of Multiqubit Bell's Inequalities

    Full text link
    We overview series of multiqubit Bell's inequalities which apply to correlation functions. We present conditions that quantum states must satisfy to violate such inequalities.Comment: 10 page

    Enabling Electroweak Baryogenesis through Dark Matter

    Full text link
    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude

    Detection of N-particle entanglement with generalized Bell inequalities

    Full text link
    We show that the generalized Bell-type inequality, explicitly involving rotational symmetry of physical laws, is very efficient in distinguishing between true N-particle quantum correlations and correlations involving less particles. This applies to various types of generalized partial separabilities. We also give a rigorous proof that the new Bell inequalities are maximally violated by the GHZ states, and find a very handy description of the N-qubit correlation function.Comment: 5 pages, minor typos corrected, journal versio

    Cosmic Archaeology with Gravitational Waves from Cosmic Strings

    Full text link
    Cosmic strings are generic cosmological predictions of many extensions of the Standard Model of particle physics, such as a U(1)U(1)^\prime symmetry breaking phase transition in the early universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early universe.Comment: 6 pages, 3 figure

    Degree of entanglement as a physically ill-posed problem: The case of entanglement with vacuum

    Full text link
    We analyze an example of a photon in superposition of different modes, and ask what is the degree of their entanglement with vacuum. The problem turns out to be ill-posed since we do not know which representation of the algebra of canonical commutation relations (CCR) to choose for field quantization. Once we make a choice, we can solve the question of entanglement unambiguously. So the difficulty is not with mathematics, but with physics of the problem. In order to make the discussion explicit we analyze from this perspective a popular argument based on a photon leaving a beam splitter and interacting with two two-level atoms. We first solve the problem algebraically in Heisenberg picture, without any assumption about the form of representation of CCR. Then we take the \infty-representation and show in two ways that in two-mode states the modes are maximally entangled with vacuum, but single-mode states are not entangled. Next we repeat the analysis in terms of the representation of CCR taken from Berezin's book and show that two-mode states do not involve the mode-vacuum entanglement. Finally, we switch to a family of reducible representations of CCR recently investigated in the context of field quantization, and show that the entanglement with vacuum is present even for single-mode states. Still, the degree of entanglement is here difficult to estimate, mainly because there are N+2N+2 subsystems, with NN unspecified and large.Comment: This paper is basically a reply to quant-ph/0507189 by S. J. van Enk and to the remarks we got from L. Vaidman after our preliminary quant-ph/0507151. Version accepted in Phys. Rev.

    Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot

    Full text link
    We theoretically investigate the production of polarization-entangled photons through the biexciton cascade decay in a single semiconductor quantum dot. In the intermediate state the entanglement is encoded in the polarizations of the first emitted photon and the exciton, where the exciton state can be effectively ``measured'' by the solid state environment through the formation of a lattice distortion. We show that the resulting loss of entanglement becomes drastically enhanced if the phonons contributing to the lattice distortion are subject to elastic scatterings at the device boundaries, which might constitute a serious limitation for quantum-dot based entangled-photon devices.Comment: 4 pages, 3 figure, to appear in Physical Review Letter

    Effects of fiber and interfacial layer architectures on the thermoplastic response of metal matrix composites

    Get PDF
    Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down
    corecore