1,878 research outputs found
Determination and Reduction of Large Diffeomorphisms
Within the Hamiltonian formulation of diffeomorphism invariant theories we
address the problem of how to determine and how to reduce diffeomorphisms
outside the identity component.Comment: 4 pages, Latex, macro espcrc2.sty. Contribution to the proceedings of
the second conference on Constrained Dynamics and Quantum Gravity, Santa
Margherita, Italy, 17-21 September 1996. To appear in Nucl. Phys. B Supp
Group Averaging and Refined Algebraic Quantization
We review the framework of Refined Algebraic Quantization and the method of
Group Averaging for quantizing systems with first-class constraints. Aspects
and results concerning the generality, limitations, and uniqueness of these
methods are discussed.Comment: 4 pages, LaTeX 2.09 using espcrc2.sty. To appear in the proceedings
of the third "Meeting on Constrained Dynamics and Quantum Gravity", Nucl.
Phys. B (Proc. Suppl.
Two black hole initial data
Misner initial data are a standard example of time-symmetric initial data
with two apparent horizons. Compact formulae describing such data are presented
in the cases of equal or non-equal masses (i.e. isometric or non-isometric
horizons). The interaction energy in the "Schwarzschild + test particle" limit
of the Misner data is analyzed.Comment: 4 pages, RevTeX4, journal version, a reference added, minor
correction
On the origin of probability in quantum mechanics
I give a brief introduction to many worlds or "no wavefunction collapse"
quantum mechanics, suitable for non-specialists. I then discuss the origin of
probability in such formulations, distinguishing between objective and
subjective notions of probability.Comment: 7 pages, 2 figures. This version to appear as a Brief Review in
Modern Physics Letter
The Canonical Approach to Quantum Gravity: General Ideas and Geometrodynamics
We give an introduction to the canonical formalism of Einstein's theory of
general relativity. This then serves as the starting point for one approach to
quantum gravity called quantum geometrodynamics. The main features and
applications of this approach are briefly summarized.Comment: 21 pages, 6 figures. Contribution to E. Seiler and I.-O. Stamatescu
(editors): `Approaches To Fundamental Physics -- An Assessment Of Current
Theoretical Ideas' (Springer Verlag, to appear
Consistency of Semiclassical Gravity
We discuss some subtleties which arise in the semiclassical approximation to
quantum gravity. We show that integrability conditions prevent the existence of
Tomonaga-Schwinger time functions on the space of three-metrics but admit them
on superspace. The concept of semiclassical time is carefully examined. We
point out that central charges in the matter sector spoil the consistency of
the semiclassical approximation unless the full quantum theory of gravity and
matter is anomaly-free. We finally discuss consequences of these considerations
for quantum field theory in flat spacetime, but with arbitrary foliations.Comment: 12 pages, LATEX, Report Freiburg THEP-94/2
Hawking radiation from decoherence
It is argued that the thermal nature of Hawking radiation arises solely due
to decoherence. Thereby any information-loss paradox is avoided because for
closed systems pure states remain pure. The discussion is performed for a
massless scalar field in the background of a Schwarzschild black hole, but the
arguments should hold in general. The result is also compared to and contrasted
with the situation in inflationary cosmology.Comment: 6 pages, to appear in Class. Quantum Gra
Quantum Zeno Effect for Exponentially Decaying Systems
The quantum Zeno effect -- suppression of decay by frequent measurements --
was believed to occur only when the response of the detector is so quick that
the initial tiny deviation from the exponential decay law is detectable.
However, we show that it can occur even for exactly exponentially decaying
systems, for which this condition is never satisfied, by considering a
realistic case where the detector has a finite energy band of detection. The
conventional theories correspond to the limit of an infinite bandwidth. This
implies that the Zeno effect occurs more widely than expected so far.Comment: 4 pages, 3 figure
Decoherence in a system of many two--level atoms
I show that the decoherence in a system of degenerate two--level atoms
interacting with a bosonic heat bath is for any number of atoms governed by
a generalized Hamming distance (called ``decoherence metric'') between the
superposed quantum states, with a time--dependent metric tensor that is
specific for the heat bath.The decoherence metric allows for the complete
characterization of the decoherence of all possible superpositions of
many-particle states, and can be applied to minimize the over-all decoherence
in a quantum memory. For qubits which are far apart, the decoherence is given
by a function describing single-qubit decoherence times the standard Hamming
distance. I apply the theory to cold atoms in an optical lattice interacting
with black body radiation.Comment: replaced with published versio
- …
