14,467 research outputs found

    Programmable networks for quantum algorithms

    Full text link
    The implementation of a quantum computer requires the realization of a large number of N-qubit unitary operations which represent the possible oracles or which are part of the quantum algorithm. Until now there are no standard ways to uniformly generate whole classes of N-qubit gates. We have developed a method to generate arbitrary controlled phase shift operations with a single network of one-qubit and two-qubit operations. This kind of network can be adapted to various physical implementations of quantum computing and is suitable to realize the Deutsch-Jozsa algorithm as well as Grover's search algorithm.Comment: 4 pages. Accepted version; Journal-ref. adde

    Exact two-qubit universal quantum circuit

    Get PDF
    We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit operations in SU(4). Each block in this circuit is given in a closed form solution. We also provide a uniform upper bound of the applications of the given entangling gates, and find that exactly half of all the Controlled-Unitary gates satisfy the same upper bound as the CNOT gate. These results allow for the efficient implementation of operations in SU(4) required for both quantum computation and quantum simulation.Comment: 5 page

    Spectral geometry of spacetime

    Full text link
    Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.Comment: AMS-LaTeX, 6 pages,Talk presented at the Euroconference on "Non-Commutative Geometry And Hopf Algebras In Field Theory And Particle Physics" Torino, Villa Gualino, September 20 - 30, 199

    Adiabatic Quantum Computation and Deutsch's Algorithm

    Get PDF
    We show that by a suitable choice of a time dependent Hamiltonian, Deutsch's algorithm can be implemented by an adiabatic quantum computer. We extend our analysis to the Deutsch-Jozsa problem and estimate the required running time for both global and local adiabatic evolutions.Comment: 6 Pages, Revtex. Typos corrected, references added. Published versio

    A conditional quantum phase gate between two 3-state atoms

    Get PDF
    We propose a scheme for conditional quantum logic between two 3-state atoms that share a quantum data-bus such as a single mode optical field in cavity QED systems, or a collective vibrational state of trapped ions. Making use of quantum interference, our scheme achieves successful conditional phase evolution without any real transitions of atomic internal states or populating the quantum data-bus. In addition, it only requires common addressing of the two atoms by external laser fields.Comment: 8 fig

    Implementation of quantum algorithms with resonant interactions

    Full text link
    We propose a scheme for implementing quantum algorithms with resonant interactions. Our scheme only requires resonant interactions between two atoms and a cavity mode, which is simple and feasible. Moreover, the implementation would be an important step towards the fabrication of quantum computers in cavity QED system.Comment: 4 pages, 3 figure

    Efficient Scheme for Initializing a Quantum Register with an Arbitrary Superposed State

    Full text link
    Preparation of a quantum register is an important step in quantum computation and quantum information processing. It is straightforward to build a simple quantum state such as |i_1 i_2 ... i_n\ket with iji_j being either 0 or 1, but is a non-trivial task to construct an {\it arbitrary} superposed quantum state. In this Paper, we present a scheme that can most generally initialize a quantum register with an arbitrary superposition of basis states. Implementation of this scheme requires O(Nn2)O(Nn^2) standard 1- and 2-bit gate operations, {\it without introducing additional quantum bits}. Application of the scheme in some special cases is discussed.Comment: 4 pages, 4 figures, accepted by Phys. Rev.

    The Measurement Calculus

    Get PDF
    Measurement-based quantum computation has emerged from the physics community as a new approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operations. Among measurement-based quantum computation methods, the recently introduced one-way quantum computer stands out as fundamental. We develop a rigorous mathematical model underlying the one-way quantum computer and present a concrete syntax and operational semantics for programs, which we call patterns, and an algebra of these patterns derived from a denotational semantics. More importantly, we present a calculus for reasoning locally and compositionally about these patterns. We present a rewrite theory and prove a general standardization theorem which allows all patterns to be put in a semantically equivalent standard form. Standardization has far-reaching consequences: a new physical architecture based on performing all the entanglement in the beginning, parallelization by exposing the dependency structure of measurements and expressiveness theorems. Furthermore we formalize several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. This allows us to transfer all the theory we develop for the one-way model to these models. This shows that the framework we have developed has a general impact on measurement-based computation and is not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new version also include formalization of several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. To appear in Journal of AC

    On Halting Process of Quantum Turing Machine

    Full text link
    We prove that there is no algorithm to tell whether an arbitrarily constructed Quantum Turing Machine has same time steps for different branches of computation. We, hence, can not avoid the notion of halting to be probabilistic in Quantum Turing Machine. Our result suggests that halting scheme of Quantum Turing Machine and quantum complexity theory based upon the existing halting scheme sholud be reexamined.Comment: 2 page

    Logic programming as quantum measurement

    Get PDF
    The emphasis is made on the juxtaposition of (quantum~theorem) proving versus quantum (theorem~proving). The logical contents of verification of the statements concerning quantum systems is outlined. The Zittereingang (trembling input) principle is introduced to enhance the resolution of predicate satisfiability problem provided the processor is in a position to perform operations with continuous input. A realization of Zittereingang machine by a quantum system is suggested.Comment: 11 pages, latex, paper accepted for publication in the International Journal of Theoretical Physic
    corecore