3,637 research outputs found
Low temperature acoustic properties of amorphous silica and the Tunneling Model
Internal friction and speed of sound of a-SiO(2) was measured above 6 mK
using a torsional oscillator at 90 kHz, controlling for thermal decoupling,
non-linear effects, and clamping losses. Strain amplitudes e(A) = 10^{-8} mark
the transition between the linear and non-linear regime. In the linear regime,
excellent agreement with the Tunneling Model was observed for both the internal
friction and speed of sound, with a cut-off energy of E(min) = 6.6 mK. In the
non-linear regime, two different behaviors were observed. Above 10 mK the
behavior was typical for non-linear harmonic oscillators, while below 10 mK a
different behavior was found. Its origin is not understood.Comment: 1 tex file, 6 figure
Local Properties of the Potential Energy Landscape of a Model Glass: Understanding the Low Temperature Anomalies
Though the existence of two-level systems (TLS) is widely accepted to explain
low temperature anomalies in the sound absorption, heat capacity, thermal
conductivity and other quantities, an exact description of their microscopic
nature is still lacking. We performed computer simulations for a binary
Lennard-Jones system, using a newly developed algorithm to locate double-well
potentials (DWP) and thus two-level systems on a systematic basis. We show that
the intrinsic limitations of computer simulations like finite time and finite
size problems do not hamper this analysis. We discuss how the DWP are embedded
in the total potential energy landscape. It turns out that most DWP are
connected to the dynamics of the smaller particles and that these DWP are
rather localized. However, DWP related to the larger particles are more
collective
Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure
We have used a Hartree-type electron-helium potential together with a density
functional description of liquid He and He to study the explosion of
electron bubbles submitted to a negative pressure. The critical pressure at
which bubbles explode has been determined as a function of temperature. It has
been found that this critical pressure is very close to the pressure at which
liquid helium becomes globally unstable in the presence of electrons. It is
shown that at high temperatures the capillary model overestimates the critical
pressures. We have checked that a commonly used and rather simple
electron-helium interaction yields results very similar to those obtained using
the more accurate Hartree-type interaction. We have estimated that the
crossover temperature for thermal to quantum nucleation of electron bubbles is
very low, of the order of 6 mK for He.Comment: 22 pages, 9 figure
Efficient family-based model checking via variability abstractions
Many software systems are variational: they can be configured to meet diverse sets of requirements. They can produce a (potentially huge) number of related systems, known as products or variants, by systematically reusing common parts. For variational models (variational systems or families of related systems),specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously, in a single run. These algorithms, implemented in a tool Snip, scale much better than ``the brute force'' approach, where all individual systems are verified using a single-system model checker, one-by-one. Nevertheless, their computational cost still greatly depends on the number of features and variants. For variational models with a large number of features and variants, the family-based model checking may be too costly or even infeasible.In this work, we address two key problems of family-based model checking. First, we improve scalability by introducing abstractions that simplify variability. Second, we reduce the burden of maintaining specialized family-based model checkers, by showing how the presented variability abstractions can be used to model check variational models using the standard version of (single-system) Spin. The variability abstractions are first defined as Galois connections on semantic domains. We then show how to use them for defining abstract family-based model checking, where a variability model is replaced with an abstract version of it, which preserves the satisfaction of LTL properties. Moreover, given an abstraction, we define a syntactic source-to-source transformation on high-level modelling languages that describe variational models, such that the model checking of the transformed high-level variational model coincides with the abstract model checking of the concrete high-level variational model. This allows the use of Spin with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We have implemented the transformations in a prototype tool, and we illustrate the practicality of this method on several case studies
Status of the LUX Dark Matter Search
The Large Underground Xenon (LUX) dark matter search experiment is currently
being deployed at the Homestake Laboratory in South Dakota. We will highlight
the main elements of design which make the experiment a very strong competitor
in the field of direct detection, as well as an easily scalable concept. We
will also present its potential reach for supersymmetric dark matter detection,
within various timeframes ranging from 1 year to 5 years or more.Comment: 4 pages, in proceedings of the SUSY09 conferenc
- …
