850 research outputs found

    Deep imaging of Eridanus II and its lone star cluster

    Full text link
    We present deep imaging of the most distant dwarf discovered by the Dark Energy Survey, Eridanus II (Eri II). Our Magellan/Megacam stellar photometry reaches \sim33 mag deeper than previous work, and allows us to confirm the presence of a stellar cluster whose position is consistent with Eri II's center. This makes Eri II, at MV=7.1M_V=-7.1, the least luminous galaxy known to host a (possibly central) cluster. The cluster is partially resolved, and at MV=3.5M_V=-3.5 it accounts for \sim4%4\% of Eri II's luminosity. We derive updated structural parameters for Eri II, which has a half-light radius of \sim280280 pc and is elongated (ϵ\epsilon\sim0.480.48), at a measured distance of DD\sim370370 kpc. The color-magnitude diagram displays a blue, extended horizontal branch, as well as a less populated red horizontal branch. A central concentration of stars brighter than the old main sequence turnoff hints at a possible intermediate-age (\sim33 Gyr) population; alternatively, these sources could be blue straggler stars. A deep Green Bank Telescope observation of Eri II reveals no associated atomic gas.Comment: 7 pages, 4 figures; ApJL accepte

    The Environment of ``E+A'' Galaxies

    Get PDF
    The violent star formation history of ``E+A'' galaxies and their detection almost exclusively in distant clusters is frequently used to link them to the ``Butcher-Oemler effect'' and to argue that cluster environment influences galaxy evolution. From 11113 spectra in the Las Campanas Redshift Survey, we have obtained a unique sample of 21 nearby ``E+A" galaxies. Surprisingly, a large fraction (about 75%) of these ``E+A''s lie in the field. Therefore, interactions with the cluster environment, in the form of the ICM or cluster potential, are not essential for ``E+A'' formation. If one mechanism is responsible for ``E+A''s, their existence in the field and the tidal features in at least 5 of the 21 argue that galaxy-galaxy interactions and mergers are that mechanism. The most likely environments for such interactions are poor groups, which have lower velocity dispersions than clusters and higher galaxy densities than the field. In hierarchical models, groups fall into clusters in greater numbers at intermediate redshifts than they do today. Thus, the Butcher-Oemler effect may reflect the typical evolution of galaxies in groups and in the field rather than the influence of clusters on star formation in galaxies. This abstract is abridged.Comment: 39 uuencoded, compressed pages (except Fig 1), complete preprint at ftp://ociw.edu/pub/aiz/eplusa.ps, ApJ, submitte

    Cluster detection from surface-brightness fluctuations in SDSS data

    Get PDF
    Galaxy clusters can be detected as surface brightness enhancements in smoothed optical surveys. This method does not require individual galaxies to be identifiable, and enables clusters to be detected out to surprisingly high redshifts, as recently demonstrated by the Las Campanas Distant Cluster Survey (LCDCS). Here, we investigate redshift limits for cluster detection in the Sloan Digital Sky Survey (SDSS). Calibrating assumptions about the surface brightness profile, the mass-to-light ratio, and the spectral energy distribution of galaxy clusters using available observational data, we show that it should be possible to detect galaxy groups out to redshifts of ~0.5, and massive galaxy clusters out to redshifts of ~1.2 in summed r'+i'+z' SDSS data. Redshift estimates can be derived from the SDSS magnitudes of brightest cluster members out to redshifts near unity. Over the area of sky it covers, SDSS should find >~98% of the clusters detectable by the Planck satellite through the thermal Sunyaev-Zel'dovich effect. The few Planck clusters not detected in SDSS will almost all be at z>~1.2.Comment: 7 pages, submitted to Astronomy & Astrophysic

    Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud

    Full text link
    Using photometry from the Ultraviolet Imaging Telescope (UIT) and photometry and spectroscopy from three ground-based optical datasets we have analyzed the stellar content of OB associations and field areas in and around the regions N 79, N 81, N 83, and N 94 in the LMC. We compare data for the OB association Lucke-Hodge 2 (LH 2) to determine how strongly the initial mass function (IMF) may depend on different photometric reductions and calibrations. We also correct for the background contribution of field stars, showing the importance of correcting for field star contamination in determinations of the IMF of star formation regions. It is possible that even in the case of an universal IMF, the variability of the density of background stars could be the dominant factor creating the differences between calculated IMFs for OB associations. We have also combined the UIT data with the Magellanic Cloud Photometric Survey to study the distribution of the candidate O-type stars in the field. We find a significant fraction, roughly half, of the candidate O-type stars are found in field regions, far from any obvious OB associations. These stars are greater than 2 arcmin (30 pc) from the boundaries of existing OB associations in the region, which is a distance greater than most O-type stars with typical dispersion velocities will travel in their lifetimes. The origin of these massive field stars (either as runaways, members of low-density star-forming regions, or examples of isolated massive star formation) will have to be determined by further observations and analysis.Comment: 16 pages, 10 figures (19 PostScript files), tabular data + header file for Table 1 (2 ASCII files). File format is LaTeX/AASTeX v.502 using the emulateapj5 preprint style (included). Also available at http://www.boulder.swri.edu/~joel/papers.html . To appear in the February 2001 issue of the Astronomical Journa

    A Collision of Subclusters in Abell 754

    Full text link
    We present direct evidence of a collision of subclusters in the galaxy cluster Abell 754. Our comparison of new optical data and archival ROSAT PSPC X-ray data reveal three collision signatures predicted by n-body/hydrodynamical simulations of hierarchical cluster evolution. First, there is strong evidence of a non-hydrostatic process; neither of the two major clumps in the galaxy distribution lies on the off-center peak of the X-ray emission from the intracluster gas. Second, the peak of the X-ray emission is elongated perpendicular to the collision axis defined by the centroids of the two galaxy clumps. Third, there is evidence of compression-heated gas; one of A754's two X-ray temperature components (Henry & Briel 1995) is among the hottest observed in any cluster and hotter than that inferred from the velocity dispersion of the associated galaxy clump. These signatures are consistent with the qualitative features of simulations (Evrard 1990a,b) in which two subclusters have collided in the plane of the sky during roughly the last Gyr. The detection of such collisions is crucial for understanding both the dynamics of individual clusters and the underlying cosmology. First, for systems like A754, estimating the cluster X-ray mass from assumptions of hydrostatic equilibrium and isothermality is incorrect and may produce the discrepancies sometimes found between X-ray masses and those derived from gravitational lens models (Babul & Miralda-Escude 1994). Second, the fraction of nearby clusters in which subclusters have collided in the last Gyr is especially sensitive to the mean mass density parameter Omega_0 (cf. Richstone et al. 1992; Evrard et al. 1993; Lacey & Cole 1993). With a large, well-defined cluster sample, it will be possible to place a new and powerful constraint on cosmological models.Comment: 4 pages + 1 color figure (Postscript). Accepted for Publication in ApJ Letter

    Hubble Tarantula Treasury Project: Unraveling Tarantula's Web. II. Optical and Near Infrared Star Formation History of the Starburst Cluster NGC 2070 in 30 Doradus

    Get PDF
    We present a study of the recent star formation of 30 Doradus in the Large Magellanic Cloud (LMC) using the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). In this paper we focus on the stars within 20 pc of the center of the massive ionizing cluster of 30 Doradus, NGC 2070. We recovered the star formation history by comparing deep optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence to post- main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. In particular, we find that the star formation in the region: i) exceeded the average LMC rate ~ 20 Myr ago; ii) accelerated dramatically ~ 7 Myr ago; and iii) reached a peak value 1-3 Myr ago. We did not find significant deviations from a Kroupa initial mass function down to 0.5 Msun. The average internal reddening E(B-V) is found to be between 0.3 and 0.4 mag.Comment: Submitted to Ap
    corecore