315 research outputs found

    Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart

    Get PDF
    AbstractDevelopment of a functional organ requires the establishment of its proper size as well as the establishment of the relative proportions of its individual components. In the zebrafish heart, organ size and proportion depend heavily on the number of cells in each of its two major chambers, the ventricle and the atrium. Heart size and chamber proportionality are both affected in zebrafish fgf8 mutants. To determine when and how FGF signaling influences these characteristics, we examined the effect of temporally controlled pathway inhibition. During cardiac specification, reduction of FGF signaling inhibits formation of both ventricular and atrial cardiomyocytes, with a stronger impact on ventricular cells. After cardiomyocyte differentiation begins, reduction of FGF signaling can still result in a deficiency of ventricular cardiomyocytes. Consistent with two temporally distinct roles for FGF, we find that increased FGF signaling induces a cardiomyocyte surplus only before cardiac differentiation begins. Thus, FGF signaling first regulates heart size and chamber proportionality during cardiac specification and later refines ventricular proportion by regulating cell number after the onset of differentiation. Together, our data demonstrate that a single signaling pathway can act reiteratively to coordinate organ size and proportion

    Neutron Diffraction and Magnetic Studies of RFe₁₂₋ₓTₓC\u3csub\u3ey\u3c/sub\u3e (R=Y,Er; T=V,Ti,Mo) Alloys

    Get PDF
    RFe12-xTxCy, (R=Y,Er; T=V,Ti,Mo) alloys were prepared by rf induction melting and analyzed using neutron powder diffraction and superconducting quantum interference device (SQUID) measurements. Rietveld analysis of the neutron diffraction data indicates that V, Ti, and Mo atoms all prefer the 8i sites. The refined amount of carbon atoms found in the interstitial sites from neutron diffraction data is significantly less than the nominal carbon content. All samples have the easy direction along the c axis. The Er sublattice couples to the Fe sublattice antiferromagnetically. The average Fe site moments range from 1.3 to 2.8 μB. The anisotropies of the crystal structures are found to relate to both the rare earth atoms and the stabilizing transition metal atoms. The SQUID measurements show that all samples have a Curie temperature near 600 K

    Crystal and Electronic Structures of LiNH₂

    Get PDF
    The crystal structure of LiNH2 was reinvestigated using powder neutron diffraction with high sensitivity. The compound crystallizes in the tetragonal space group I4 with lattice parameters α = b= 5.034 42 (24) Å, c = 10.255 58 (52) Å. It is found that H atoms occupy 8g1(0.2429, 0.1285, 0.1910) and 8g2 (0.3840, 0.3512, 0.1278) sites. The bond lengths between the nearest nitrogen and hydrogen atoms are 0.986 and 0.942 Å, respectively. The bond angle between H-N-H is about 99.97°. These results are significantly different from those of previous experiments. The electronic structure was calculated according to the revised structural data. The calculated density of states and charge density distribution show strong ionic characteristics between the ionic Li+ cation and the covalent bonded [NH2]- anion

    Tuning the spin Hamiltonian of NENP by external pressure: a neutron scattering study

    Full text link
    We report an inelastic neutron scattering study of antiferromagnetic spin dynamics in the Haldane chain compound Ni(C2H8N2)2NO2ClO4 (NENP) under external hydrostatic pressure P = 2.5 GPa. At ambient pressure, the magnetic excitations in NENP are dominated by a long-lived triplet mode with a gap which is split by orthorhombic crystalline anisotropy into a lower doublet centered at Δ\Delta_\perp\approx 1.2meV and a singlet at Δ\Delta_\parallel\approx 2.5meV. With pressure we observe appreciable shifts in these levels, which move to Δ(2.5GPa)\Delta_\perp{(2.5GPa)}\approx 1.45 meV and Δ(2.5GPa)\Delta_\parallel(2.5GPa)\approx 2.2meV. The dispersion of these modes in the crystalline c-direction perpendicular to the chain was measured here for the first time, and can be accounted for by an interchain exchange J'_c approximately 3e-4*J which changes only slightly with pressure. Since the average gap value ΔH\Delta_H\approx 1.64 meV remains almost unchanged with P, we conclude that in NENP the application of external pressure does not affect the intrachain coupling J appreciably, but does produce a significant decrease of the single-ion anisotropy constant from D/J = 0.16(2) at ambient pressure to D/J = 0.09(7) at P = 2.5 GPa.Comment: LaTeX file nenp_p.tex, 10 pages, 1 table, 5 figures. Submitted to Phys. Rev.

    Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration

    Get PDF
    Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine

    Large Scale Growth and Magnetic Properties of Fe and Fe₃O₄ Nanowires

    Get PDF
    Fe and Fe3O4 nanowires have been synthesized by thermal decomposition of Fe(CO)5, followed by heat treatments. The Fe wires are formed through the aggregation of nanoparticles generated by decomposition of Fe(CO)5. A core-shell structure with an iron oxide shell and Fe core is observed for the as-prepared Fe wires. Annealing in air leads to the formation of Fe2O3/Fe3O4 wires, which after heat treatment in a N2/alcohol atmosphere form Fe3O4 wires with a sharp Verwey [Nature (London) 144, 327 (1939)] transition at 125 K. The Fe3O4 wires have coercivities of 261 and 735 Oe along the wire axis at RT and 5 K, respectively. The large increase of coercivity at 5 K as compared to RT is due to the increase of anisotropy resulting from the Verwey transition

    The Effect of Cu-Doping on the Magnetic and Transport Properties of La₀.₇Sr₀.₃MnO₃

    Get PDF
    The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1xCuxO3 (0\u3c=x\u3c=0.20) have been studied using neutron diffraction, magnetization, and magnetoresistance (MR) measurements. All samples show the rhombohedral structure with the R[overline 3]c space-group from 10 K to room temperature (RT). Neutron diffraction data suggest that some of the Cu ions have a Cu3+ state in these compounds. The substitution of Mn by Cu affects the MnO bond length and Mn-O-Mn bond angle resulting from the minimization of the distortion of the MnO6 octahedron. Resistivity measurements show that a metal to insulator transition occurs for the x\u3e=0.15 samples. The x=0.15 sample shows the highest MR([approximate]80%), which might result from the co-existence of Cu3-Cu2+ and the dilution effect of Cu-doping on the double exchange interactio

    Structure, magnetic and transport properties of Ti-substituted La0.7Sr0.3MnO3

    Get PDF
    Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3c) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x greater than 0.10, while the unit cell volume remains nearly constant for x greater than 0.10. The average (Mn,Ti)-O bond length increases up to x=0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x=0.15 at room temperature. Below the Curie temperature T_C, the resistance exhibits metallic behavior for the x _ 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x_ 0.10 samples. A peak in resistivity appears below T_C for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x less than or equal to 0.10. The maximum MR effect is about 70% for La0.7Sr0.3Mn0.8Ti0.2O3. The separation of TC and the resistivity maximum temperature Tmax enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La0.7Sr0.3MnO3.Comment: zip fil

    Study of the Electronic Structure of CaFeO₃

    Get PDF
    We have studied the charge disproportionation phenomenon in CaFeO3 using the local-spin density approximation with the on-site Coulomb interaction parameter U and exchange parameter J. The calculation reveals that the total number of the 3d electrons is about 5.1 for both Fe(1)(Fe5+) and Fe(2)(Fe3+) atoms, and that there are about 0.25 electron holes in the O-2p band. Therefore, the charge disproportionation can be more accurately described as 2d5L(Fe4+)=d5L2(Fe5+)+d5(Fe3+), where L denotes a hole in the oxygen 2p band, instead of 2d4(Fe4+)=d3(Fe5+)+d5(Fe3+). The hybridization between the Fe-3d and O-2p orbitals is stronger for Fe(1) than for Fe(2) due to the shorter Fe(1)-O bond. The hyperfine magnetic field contributed from conduction electron polarization is larger for Fe(2), resulting from a stronger s-d hybridization between the s orbital of Fe(2) and the d orbitals of its neighboring Fe(1) atoms. The on-site Coulomb repulsion and the exchange interaction increase the splitting between the occupied spin up and unoccupied spin down bands of Fe atoms. Fe-3d electrons become localized and the occupied d-band shifts to a lower energy range, even below the O-2p level. The calculated magnetic moments, hyperfine fields, and electron charge density agree well with the experimental data

    The effect of magnetic dipolar interactions on the interchain spin wave dispersion in CsNiF_3

    Full text link
    Inelastic neutron scattering measurements were performed on the ferromagnetic chain system CsNiF_3 in the collinear antiferromagnetic ordered state below T_N = 2.67K. The measured spin wave dispersion was found to be in good agreement with linear spin wave theory including dipolar interactions. The additional dipole tensor in the Hamiltonian was essential to explain some striking phenomena in the measured spin wave spectrum: a peculiar feature of the dispersion relation is a jump at the zone center, caused by strong dipolar interactions in this system. The interchain exchange coupling constant and the planar anisotropy energy were determined within the present model to be J'/k_B = -0.0247(12)K and A/k_B = 3.3(1)K. This gives a ratio J/J' \approx 500, using the previously determined intrachain coupling constant J/k_B = 11.8$. The small exchange energy J' is of the same order as the dipolar energy, which implies a strong competition between the both interactions.Comment: 18 pages, TeX type, 7 Postscript figures included. To be published in Phys. Rev.
    corecore