32,468 research outputs found
On existence of matter outside a static black hole
It is expected that matter composed of a perfect fluid cannot be at rest
outside of a black hole if the spacetime is asymptotically flat and static
(non-rotating). However, there has not been a rigorous proof for this
expectation without assuming spheical symmetry. In this paper, we provide a
proof of non-existence of matter composed of a perfect fluid in static black
hole spacetimes under certain conditions, which can be interpreted as a
relation between the stellar mass and the black hole mass.Comment: 4pages, final version accepted for publication in Journal of
Mathematical Physic
Lens space surgeries on A'Campo's divide knots
It is proved that every knot in the major subfamilies of J. Berge's lens
space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented
by an L-shaped (real) plane curve as a "divide knot" defined by N. A'Campo in
the context of singularity theory of complex curves. For each knot given by
Berge's parameters, the corresponding plane curve is constructed. The surgery
coefficients are also considered. Such presentations support us to study each
knot itself, and the relationship among the knots in the set of lens space
surgeries.Comment: 26 pages, 19 figures. The proofs of Theorem 1.3 and Lemma 3.5 are
written down by braid calculus. Section 4 (on the operation Adding squares)
is revised and improved the most. Section 5 is adde
Metastability of R-Charged Black Holes
The global stability of R-charged AdS black holes in a grand canonical
ensemble is examined by eliminating the constraints from the action, but
without solving the equations of motion, thereby constructing the reduced
action of the system. The metastability of the system is found to set in at a
critical value of the chemical potential which is conjugate to the R-charge.
The relation among the small black hole, large black hole and the instability
is discussed. The result is consistent with the metastability found in the
AdS/CFT-conjectured dual field theory. The "renormalized" temperature of AdS
black holes, which has been rather ad hoc, is suggested to be the boundary
temperature in the sense of AdS/CFT correspondence. As a byproduct of the
analysis, we find a more general solution of the theory and its properties are
briefly discussed.Comment: 36 pages, 7 figures, v2 is the published version. the exposition is
made slightly shorter and hopefully cleare
Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
We numerically investigate localization properties of electronic states in a
static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with
realistic parameters obtained by quantum-chemical calculation. The randomness
in the on-site energies caused by the electron-phonon coupling are completely
correlated to the off-diagonal parts. In the single electron model, the effect
of the hydrogen-bond stretchings, the twist angles between the base pairs and
the finite system size effects on the energy dependence of the localization
length and on the Lyapunov exponent are given. The localization length is
reduced by the influence of the fluctuations in the hydrogen bond stretchings.
It is also shown that the helical twist angle affects the localization length
in the poly(dG)-poly(dC) DNA polymer more strongly than in the
poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy
dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure
Effect of the spin-orbit interaction and the electron phonon coupling on the electronic state in a silicon vacancy
The electronic state around a single vacancy in silicon crystal is
investigated by using the Green's function approach. The triply degenerate
charge states are found to be widely extended and account for extremely large
elastic softening at low temperature as observed in recent ultrasonic
experiments. When we include the LS coupling on each Si
atom, the 6-fold spin-orbital degeneracy for the state with the valence
+1 and spin 1/2 splits into doublet groundstates and
quartet excited states with a reduced excited energy of . We also consider the effect of couplings between electrons and
Jahn-Teller phonons in the dangling bonds within the second order perturbation
and find that the groundstate becomes quartet which is responsible
for the magnetic-field suppression of the softening in B-doped silicon.Comment: 4 pages, 2 figure
Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks
This work shows that it is possible to fool/attack recent state-of-the-art
face detectors which are based on the single-stage networks. Successfully
attacking face detectors could be a serious malware vulnerability when
deploying a smart surveillance system utilizing face detectors. We show that
existing adversarial perturbation methods are not effective to perform such an
attack, especially when there are multiple faces in the input image. This is
because the adversarial perturbation specifically generated for one face may
disrupt the adversarial perturbation for another face. In this paper, we call
this problem the Instance Perturbation Interference (IPI) problem. This IPI
problem is addressed by studying the relationship between the deep neural
network receptive field and the adversarial perturbation. As such, we propose
the Localized Instance Perturbation (LIP) that uses adversarial perturbation
constrained to the Effective Receptive Field (ERF) of a target to perform the
attack. Experiment results show the LIP method massively outperforms existing
adversarial perturbation generation methods -- often by a factor of 2 to 10.Comment: to appear ECCV 2018 (accepted version
- …
