32,468 research outputs found

    On existence of matter outside a static black hole

    Full text link
    It is expected that matter composed of a perfect fluid cannot be at rest outside of a black hole if the spacetime is asymptotically flat and static (non-rotating). However, there has not been a rigorous proof for this expectation without assuming spheical symmetry. In this paper, we provide a proof of non-existence of matter composed of a perfect fluid in static black hole spacetimes under certain conditions, which can be interpreted as a relation between the stellar mass and the black hole mass.Comment: 4pages, final version accepted for publication in Journal of Mathematical Physic

    Lens space surgeries on A'Campo's divide knots

    Full text link
    It is proved that every knot in the major subfamilies of J. Berge's lens space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented by an L-shaped (real) plane curve as a "divide knot" defined by N. A'Campo in the context of singularity theory of complex curves. For each knot given by Berge's parameters, the corresponding plane curve is constructed. The surgery coefficients are also considered. Such presentations support us to study each knot itself, and the relationship among the knots in the set of lens space surgeries.Comment: 26 pages, 19 figures. The proofs of Theorem 1.3 and Lemma 3.5 are written down by braid calculus. Section 4 (on the operation Adding squares) is revised and improved the most. Section 5 is adde

    Metastability of R-Charged Black Holes

    Full text link
    The global stability of R-charged AdS black holes in a grand canonical ensemble is examined by eliminating the constraints from the action, but without solving the equations of motion, thereby constructing the reduced action of the system. The metastability of the system is found to set in at a critical value of the chemical potential which is conjugate to the R-charge. The relation among the small black hole, large black hole and the instability is discussed. The result is consistent with the metastability found in the AdS/CFT-conjectured dual field theory. The "renormalized" temperature of AdS black holes, which has been rather ad hoc, is suggested to be the boundary temperature in the sense of AdS/CFT correspondence. As a byproduct of the analysis, we find a more general solution of the theory and its properties are briefly discussed.Comment: 36 pages, 7 figures, v2 is the published version. the exposition is made slightly shorter and hopefully cleare

    Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers

    Get PDF
    We numerically investigate localization properties of electronic states in a static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with realistic parameters obtained by quantum-chemical calculation. The randomness in the on-site energies caused by the electron-phonon coupling are completely correlated to the off-diagonal parts. In the single electron model, the effect of the hydrogen-bond stretchings, the twist angles between the base pairs and the finite system size effects on the energy dependence of the localization length and on the Lyapunov exponent are given. The localization length is reduced by the influence of the fluctuations in the hydrogen bond stretchings. It is also shown that the helical twist angle affects the localization length in the poly(dG)-poly(dC) DNA polymer more strongly than in the poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure

    Effect of the spin-orbit interaction and the electron phonon coupling on the electronic state in a silicon vacancy

    Full text link
    The electronic state around a single vacancy in silicon crystal is investigated by using the Green's function approach. The triply degenerate charge states are found to be widely extended and account for extremely large elastic softening at low temperature as observed in recent ultrasonic experiments. When we include the LS coupling λSi\lambda_{\rm Si} on each Si atom, the 6-fold spin-orbital degeneracy for the V+V^{+} state with the valence +1 and spin 1/2 splits into Γ7\Gamma_{7} doublet groundstates and Γ8\Gamma_{8} quartet excited states with a reduced excited energy of O(λSi/10)O(\lambda_{\rm Si}/10). We also consider the effect of couplings between electrons and Jahn-Teller phonons in the dangling bonds within the second order perturbation and find that the groundstate becomes Γ8\Gamma_{8} quartet which is responsible for the magnetic-field suppression of the softening in B-doped silicon.Comment: 4 pages, 2 figure

    Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks

    Full text link
    This work shows that it is possible to fool/attack recent state-of-the-art face detectors which are based on the single-stage networks. Successfully attacking face detectors could be a serious malware vulnerability when deploying a smart surveillance system utilizing face detectors. We show that existing adversarial perturbation methods are not effective to perform such an attack, especially when there are multiple faces in the input image. This is because the adversarial perturbation specifically generated for one face may disrupt the adversarial perturbation for another face. In this paper, we call this problem the Instance Perturbation Interference (IPI) problem. This IPI problem is addressed by studying the relationship between the deep neural network receptive field and the adversarial perturbation. As such, we propose the Localized Instance Perturbation (LIP) that uses adversarial perturbation constrained to the Effective Receptive Field (ERF) of a target to perform the attack. Experiment results show the LIP method massively outperforms existing adversarial perturbation generation methods -- often by a factor of 2 to 10.Comment: to appear ECCV 2018 (accepted version
    corecore