746 research outputs found

    Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples

    Get PDF
    This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces Hs(Ω)H^s(\Omega) and H~s(Ω)\widetilde{H}^s(\Omega), for sRs\in \mathbb{R} and an open ΩRn\Omega\subset \mathbb{R}^n. We exhibit examples in one and two dimensions of sets Ω\Omega for which these scales of Sobolev spaces are not interpolation scales. In the cases when they are interpolation scales (in particular, if Ω\Omega is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large

    A Probabilistic proof of the breakdown of Besov regularity in LL-shaped domains

    Full text link
    {We provide a probabilistic approach in order to investigate the smoothness of the solution to the Poisson and Dirichlet problems in LL-shaped domains. In particular, we obtain (probabilistic) integral representations for the solution. We also recover Grisvard's classic result on the angle-dependent breakdown of the regularity of the solution measured in a Besov scale

    Stability of complex hyperbolic space under curvature-normalized Ricci flow

    Full text link
    Using the maximal regularity theory for quasilinear parabolic systems, we prove two stability results of complex hyperbolic space under the curvature-normalized Ricci flow in complex dimensions two and higher. The first result is on a closed manifold. The second result is on a complete noncompact manifold. To prove both results, we fully analyze the structure of the Lichnerowicz Laplacian on complex hyperbolic space. To prove the second result, we also define suitably weighted little H\"{o}lder spaces on a complete noncompact manifold and establish their interpolation properties.Comment: Some typos in version 2 are correcte

    Local regularity for fractional heat equations

    Full text link
    We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set ΩRN\Omega\subset\mathbb{R}^N. Proofs combine classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic problems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0756

    Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise

    Full text link
    The paper is concerned with spatial and time regularity of solutions to linear stochastic evolution equation perturbed by L\'evy white noise "obtained by subordination of a Gaussian white noise". Sufficient conditions for spatial continuity are derived. It is also shown that solutions do not have in general \cadlag modifications. General results are applied to equations with fractional Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already been publishe

    Well-posedness of Hydrodynamics on the Moving Elastic Surface

    Full text link
    The dynamics of a membrane is a coupled system comprising a moving elastic surface and an incompressible membrane fluid. We will consider a reduced elastic surface model, which involves the evolution equations of the moving surface, the dynamic equations of the two-dimensional fluid, and the incompressible equation, all of which operate within a curved geometry. In this paper, we prove the local existence and uniqueness of the solution to the reduced elastic surface model by reformulating the model into a new system in the isothermal coordinates. One major difficulty is that of constructing an appropriate iterative scheme such that the limit system is consistent with the original system.Comment: The introduction is rewritte

    On Bogovski\u{\i} and regularized Poincar\'e integral operators for de Rham complexes on Lipschitz domains

    Full text link
    We study integral operators related to a regularized version of the classical Poincar\'e path integral and the adjoint class generalizing Bogovski\u{\i}'s integral operator, acting on differential forms in RnR^n. We prove that these operators are pseudodifferential operators of order -1. The Poincar\'e-type operators map polynomials to polynomials and can have applications in finite element analysis. For a domain starlike with respect to a ball, the special support properties of the operators imply regularity for the de Rham complex without boundary conditions (using Poincar\'e-type operators) and with full Dirichlet boundary conditions (using Bogovski\u{\i}-type operators). For bounded Lipschitz domains, the same regularity results hold, and in addition we show that the cohomology spaces can always be represented by CC^\infty functions.Comment: 23 page

    Generalized and weighted Strichartz estimates

    Full text link
    In this paper, we explore the relations between different kinds of Strichartz estimates and give new estimates in Euclidean space Rn\mathbb{R}^n. In particular, we prove the generalized and weighted Strichartz estimates for a large class of dispersive operators including the Schr\"odinger and wave equation. As a sample application of these new estimates, we are able to prove the Strauss conjecture with low regularity for dimension 2 and 3.Comment: Final version, to appear in the Communications on Pure and Applied Analysis. 33 pages. 2 more references adde
    corecore