95,262 research outputs found
Effects of local event-by-event conservation laws in ultrarelativistic heavy-ion collisions at particlization
Many simulations of relativistic heavy-ion collisions involve the switching from relativistic hydrodynamics to kinetic particle transport. This switching entails the sampling of particles from the distribution of energy, momentum, and conserved currents provided by hydrodynamics. Usually, this sampling ensures the conservation of these quantities only on the average, i.e., the conserved quantities may actually fluctuate among the sampled particle configurations and only their averages over many such configurations agree with their values from hydrodynamics. Here we apply a recently invented method [D. Oliinychenko and V. Koch, Phys. Rev. Lett. 123, 182302 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.182302] to ensure conservation laws for each sampled configuration in spatially compact regions (patches) and study their effects: From the well-known (micro-)canonical suppression of means and variances to little studied (micro-)canonical correlations and higher-order fluctuations. Most of these effects are sensitive to the patch size. Many of them do not disappear even in the thermodynamic limit, when the patch size goes to infinity. The developed method is essential for particlization of stochastic hydrodynamics. It is useful for studying the chiral magnetic effect, small systems, and in general for fluctuation and correlation observables
Orbital Magnetism Induced by Heat Currents in Mott insulators
We derive the effective heat current density operator for the strong-coupling
regime of Mott insulators. Similarly to the case of the electric current
density, the leading contribution to this effective operator is proportional to
the local scalar spin chirality . This common
form of the effective heat and electric current density operators leads to a
novel cross response in Mott insulators. A heat current induces a distribution
of orbital magnetic moments in systems containing loops of an odd number of
hopping terms. The relative orientation of the orbital moments depends on the
particular lattice of magnetic ions. This subtle effect arises from the
symmetries that the heat and electric currents have in common.Comment: 4.3 pages and 3 figure
Experimental tests on the lifetime Asymmetry
The experimental test problem of the left-right polarization-dependent
lifetime asymmetry is discussed. It shows that the existing experiments cannot
demonstrate the lifetime asymmetry to be right or wrong after analyzing the
measurements on the neutron, the muon and the tau lifetime, as well as the
experiment. However, It is pointed out emphatically that the SLD and the
E158 experiments, the measurements of the left-right integrated cross section
asymmetry in boson production by collisions and by
electron-electron M{\o}ller scattering, can indirectly demonstrate the lifetime
asymmetry. In order to directly demonstrate the lifetime asymmetry, we propose
some possible experiments on the decays of polarized muons. The precise
measurement of the lifetime asymmetry could have important significance for
building a muon collider, also in cosmology and astrophysics. It would provide
a sensitive test of the standard model in particle physics and allow for
exploration of the possible interactions.Comment: 11 pages, 1 figur
Polar codes and polar lattices for the Heegard-Berger problem
Explicit coding schemes are proposed to achieve the rate-distortion function of the Heegard-Berger problem using polar codes. Specifically, a nested polar code construction is employed to achieve the rate-distortion function for doublysymmetric binary sources when the side information may be absent. The nested structure contains two optimal polar codes for lossy source coding and channel coding, respectively. Moreover, a similar nested polar lattice construction is employed when the source and the side information are jointly Gaussian. The proposed polar lattice is constructed by nesting a quantization polar lattice and a capacity-achieving polar lattice for the additive white Gaussian noise channel
Mixed integer nonlinear programming for Joint Coordination of Plug-in Electrical Vehicles Charging and Smart Grid Operations
The problem of joint coordination of plug-in electric vehicles (PEVs)
charging and grid power control is to minimize both PEVs charging cost and
energy generation cost while meeting both residential and PEVs' power demands
and suppressing the potential impact of PEVs integration. A bang-bang PEV
charging strategy is adopted to exploit its simple online implementation, which
requires computation of a mixed integer nonlinear programming problem (MINP) in
binary variables of the PEV charging strategy and continuous variables of the
grid voltages. A new solver for this MINP is proposed. Its efficiency is shown
by numerical simulations.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0445
- …
