694 research outputs found
Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants
In this paper, the global optimization problem with
being a hyperinterval in and satisfying the Lipschitz condition
with an unknown Lipschitz constant is considered. It is supposed that the
function can be multiextremal, non-differentiable, and given as a
`black-box'. To attack the problem, a new global optimization algorithm based
on the following two ideas is proposed and studied both theoretically and
numerically. First, the new algorithm uses numerical approximations to
space-filling curves to reduce the original Lipschitz multi-dimensional problem
to a univariate one satisfying the H\"{o}lder condition. Second, the algorithm
at each iteration applies a new geometric technique working with a number of
possible H\"{o}lder constants chosen from a set of values varying from zero to
infinity showing so that ideas introduced in a popular DIRECT method can be
used in the H\"{o}lder global optimization. Convergence conditions of the
resulting deterministic global optimization method are established. Numerical
experiments carried out on several hundreds of test functions show quite a
promising performance of the new algorithm in comparison with its direct
competitors.Comment: 26 pages, 10 figures, 4 table
- …
