521 research outputs found

    Supernova SN 2012dn: A spectroscopic clone of SN 2006gz

    Full text link
    We present optical and UV analysis of the luminous type Ia supernova SN 2012dn covering the period \sim -11 to +109 days with respect to the BB band maximum, that occurred on JD 2456132.89 ±\pm 0.19, with an apparent magnitude of mBmaxm_{B}^\text{max} = 14.38 ±\pm 0.02. The absolute magnitudes at maximum in BB and VV bands are MBmax=19.52±0.15M_{B}^\text{max} = -19.52 \pm 0.15 and MVmax=19.42±0.15M_{V}^\text{max} = -19.42 \pm 0.15, respectively. SN 2012dn is marginally luminous compared to normal type Ia supernovae. The peak bolometric luminosity of logLbolmax=43.27±0.06\log L_\text{bol}^\text{max} = 43.27 \pm 0.06 erg s1^{-1} suggests that 0.82±0.120.82 \pm 0.12 M_\odot of 56^{56}Ni was synthesized in the explosion. The decline rate Δm15(B)true=0.92±0.04\Delta m_{15}(B)_\text{true}= 0.92 \pm 0.04 mag is lower than that of normal type Ia supernovae, and similar to the luminous SN 1991T. However, the photometric and spectroscopic behaviour of SN 2012dn is different from that of SN 1991T. Early phase light curves in RR and II bands are very broad. The II band peak has a plateau-like appearance similar to the super-Chandra SN 2009dc. Pre-maximum spectra show clear evidence of C\,{\sc ii} 6580 \AA\, line, indicating the presence of unburned materials. The velocity evolution of C\,{\ sc ii} line is peculiar. Except for the very early phase (\sim-13 d), the C\,{\sc ii} line velocity is lower than the velocity estimated using the Si\,{\sc ii} line. During the pre-maximum and close to maximum phase, to reproduce observed shape of the spectra, the synthetic spectrum code {\sc syn++} needs significantly higher blackbody temperature than those required for normal type Ia events. The photospheric velocity evolution and other spectral properties are similar to those of the carbon-rich SN 2006gz.Comment: Accepted for publication in MNRAS, 19 pages, 20 figure

    ASASSN-14dq: A fast-declining type II-P Supernova in a low-luminosity host galaxy

    Full text link
    Optical broadband (UBVRI) photometric and low-resolution spectroscopic observations of the type II-P supernova (SN) ASASSN-14dq are presented. ASASSN-14dq exploded in a low-luminosity/metallicity host galaxy UGC 11860, the signatures of which are present as weak iron lines in the photospheric phase spectra. The SN has a plateau duration of \sim\,90 d, with a plateau decline rate of 1.38 mag (100d)1\rm mag\ (100 d)^{-1} in V-band which is higher than most type II-P SNe. ASASSN-14dq is a luminous type II-P SN with a peak VV-band absolute magnitude of -17.7±\,\pm\,0.2 mag. The light curve of ASASSN-14dq indicates it to be a fast-declining type II-P SN, making it a transitional event between the type II-P and II-L SNe. The empirical relation between the steepness parameter and 56Ni\rm ^{56}Ni mass for type II SNe was rebuilt with the help of well-sampled light curves from the literature. A 56Ni\rm ^{56}Ni mass of \sim\,0.029 M_{\odot} was estimated for ASASSN-14dq, which is slightly lower than the expected 56Ni\rm ^{56}Ni mass for a luminous type II-P SN. Using analytical light curve modelling, a progenitor radius of 3.6×1013\rm \sim3.6\times10^{13} cm, an ejecta mass of 10 M\rm \sim10\ M_{\odot} and a total energy of 1.8×1051\rm \sim\,1.8\times 10^{51} ergs was estimated for this event. The photospheric velocity evolution of ASASSN-14dq resembles a type II-P SN, but the Balmer features (Hα\alpha and Hβ\beta) show relatively slow velocity evolution. The high-velocity Hα\alpha feature in the plateau phase, the asymmetric Hα\alpha emission line profile in the nebular phase and the inferred outburst parameters indicate an interaction of the SN ejecta with the circumstellar material (CSM).Comment: 28 pages, 29 figures, Accepted in MNRA

    Optical Photometry of the GRB 010222 Afterglow

    Get PDF
    The optical afterglow of GRB 010222 was observed using the recently installed 2-m telescope at the Indian Astronomical Observatory, Hanle, and the telescopes at the Vainu Bappu Observatory, Kavalur, beginning ~ 0.6 day after the detection of the event. The results based on these photometric observations combined with others reported in the literature are presented in this paper. The R band light curve shows an initial decline of intensities proportional to t^{-0.542} which steepens, after 10.3 hours, to t^{-1.263}. Following the model of collimated outflow, the early break in the light curve implies a very narrow beam angle (~ 2-3 deg). The two decay rates are consistent with the standard jet model in a uniform density ambient medium, but require a hard spectrum of electron power density with p ~ 1.5. The R band light between 14 and 17 hours since outburst departs from the power law fit by 0.1 mag and shows some evidence for fluctuations over timescales of an hour in the observer's frame. Such deviations are expected due to density inhomogeneities if the ambient medium is similar to the local interstellar medium. GRB 010222 is thus an example of a highly collimated outflow with a hard spectrum of electron energy distribution in normal interstellar environment.Comment: 15 pages, Latex, including 2 postscript figures, to appear in the Bull. astro. Soc. India, September 2001 issu

    Night sky at the Indian Astronomical Observatory during 2000-2008

    Get PDF
    We present an analysis of the optical night sky brightness and extinction coefficient measurements in UBVRI at the Indian Astronomical Observatory (IAO), Hanle, during the period 2003-2008. They are obtained from an analysis of CCD images acquired at the 2 m Himalayan Chandra Telescope at IAO. Night sky brightness was estimated using 210 HFOSC images obtained on 47 nights and covering the declining phase of solar activity cycle-23. The zenith corrected values of the moonless night sky brightness in mag/square arcsecs are 22.14(U), 22.42(B), 21.28(V), 20.54(R) and 18.86(I) band. This shows that IAO is a dark site for optical observations. No clear dependency of sky brightness with solar activity is found. Extinction values at IAO are derived from an analysis of 1325 images over 58 nights. They are found to be 0.36 in U-band, 0.21 in B-band, 0.12 in V-band, 0.09 in R-band and 0.05 in I-band. On average, extinction during the summer months is slightly larger than that during the winter months. No clear evidence for a correlation between extinction in all bands and the average night time wind speed is found. Also presented here is the low resolution moonless optical night sky spectrum for IAO covering the wavelength range 3000-9300 \AA. Hanle region thus has the required characteristics of a good astronomical site in terms of night sky brightness and extinction, and could be a natural candidate site for any future large aperture Indian optical-infrared telescope(s).Comment: 18 pages, 7 figures, uses basi.cls, accepted for publication in Bulletin of the Astronomical Society of Indi

    GMRT Observations of the 2006 outburst of the Nova RS Ophiuchi: First detection of emission at radio frequencies < 1.4 GHz

    Full text link
    The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.Comment: 14 pages, 1 figure. Accepted for publication in ApJ

    Photometric Identification of Type Ia Supernovae at Moderate Redshift

    Full text link
    Large photometric surveys with the aim of identifying many Type Ia supernovae (SNe) at moderate redshift are challenged in separating these SNe from other SN types. We are motivated to identify Type Ia SNe based only on broadband photometric information, since spectroscopic determination of the SN type, the traditional method, requires significant amounts of time on large telescopes. We consider the possible observables provided by a large synoptic photometry survey. We examine the optical colors and magnitudes of many SN types from z=0.1 to z=1.0, using space-based ultraviolet spectra and ground-based optical spectra to simulate the photometry. We also discuss the evolution of colors over the SN outburst and the use of host galaxy characteristics to aid in the identification of Type Ia SNe. We consider magnitudes in both the SDSS photometric system and in a proposed filter system with logarithmically spaced bandpasses. We find that photometric information in four bands covering the entire optical spectrum appears capable of providing identification of Type Ia SNe based on their colors at a single observed epoch soon after maximum light, even without independent estimates of the SN redshift. Very blue filters are extremely helpful, as at moderate redshift they sample the restframe ultraviolet spectrum where the SN types are very different. We emphasize the need for further observations of SNe in the restframe ultraviolet to fully characterize, refine, and improve this method of SN type identification.Comment: AASTeX, 37 pages with 12 figures, being resubmitted to A.J. Figures 3, 4 and 9 updated, minor typos correcte
    corecore