45,194 research outputs found

    Physiological Aspects of Genetics

    Get PDF
    A considerable amount of evidence indicates that desoxyribonucleic acid is capable of duplicating itself, a property also possessed by genes. (By a self-duplicating material, we mean one which plays some essential role in its own production.) Watson & Crick (1) have proposed a new structure for desoxyribonucleic acid which not only takes into account the existing analytical and x-ray diffraction data but also seems capable of explaining the mechanism of duplication. Their model consists of two helical chains coiled around the same axis, the purine and pyrimidine bases on the inside, the phosphate groups on the outside. The chains are held together by hydrogen bonds between the bases, the adenine residues of either chain being bonded specifically to thymine in the other, and similarly guanine to cytosine. The sequence of bases along one chain is not restricted, but once fixed the sequence along the other chain is determined. This complementarity, which is the most novel feature of the structure, suggests that duplication takes place by separation of the two chains, followed by the synthesis of its complement alongside each chain. The model is supported by recent x-ray diffraction studies (2, 3)

    Construction of weakly CUD sequences for MCMC sampling

    Full text link
    In Markov chain Monte Carlo (MCMC) sampling considerable thought goes into constructing random transitions. But those transitions are almost always driven by a simulated IID sequence. Recently it has been shown that replacing an IID sequence by a weakly completely uniformly distributed (WCUD) sequence leads to consistent estimation in finite state spaces. Unfortunately, few WCUD sequences are known. This paper gives general methods for proving that a sequence is WCUD, shows that some specific sequences are WCUD, and shows that certain operations on WCUD sequences yield new WCUD sequences. A numerical example on a 42 dimensional continuous Gibbs sampler found that some WCUD inputs sequences produced variance reductions ranging from tens to hundreds for posterior means of the parameters, compared to IID inputs.Comment: Published in at http://dx.doi.org/10.1214/07-EJS162 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Migrant workers in the East Midlands labour market 2007

    Get PDF
    This report provides a profile of international migrants in the East Midlands and their role in the regional labour marke

    Short-term effect of soil disturbance by mechanical weeding on plant available nutrients in an organic vs conventional rotations experiment

    Get PDF
    The question whether soil disturbance from mechanical weeding in organic systems affects nutrient release from organic matter in compost-amended soil was examined in a long-term organic-versus-conventional rotational cropping system experiment over three years. The experimental design included continuous snap beans, and a fully phased snap beans/fall rye crop rotation sequence. Treatments were combinations of yearly applied fertiliser (synthetic fertiliser, 1× compost, 3× compost) and weed control (herbicide, mechanical weeding). The 1× compost rate was calculated to deliver the equivalent of 50 kg N ha-1: equal to the rate ofN in the synthetic fertiliser treatments. Ion exchange membranes were buried for 24 hours following mechanical weeding in bean plots. Adsorbed ions were then eluted and quantified. Available ammonium-nitrogen was not affected byweeding treatment, but nitrate-nitrogen was consistently less in mechanically weeded plots than in plots treated with herbicide. Principal component analysis of NH4-N, NO3-N, P, K, Ca and Mg availabilities showed distinct groupings of treatments according to fertility treatment rather than weeding treatment. The effect of cropping sequence on available nutrients was pronounced (P ≤ 0.001) only in plots amended with synthetic fertilisers

    CRKSPH - A Conservative Reproducing Kernel Smoothed Particle Hydrodynamics Scheme

    Full text link
    We present a formulation of smoothed particle hydrodynamics (SPH) that utilizes a first-order consistent reproducing kernel, a smoothing function that exactly interpolates linear fields with particle tracers. Previous formulations using reproducing kernel (RK) interpolation have had difficulties maintaining conservation of momentum due to the fact the RK kernels are not, in general, spatially symmetric. Here, we utilize a reformulation of the fluid equations such that mass, linear momentum, and energy are all rigorously conserved without any assumption about kernel symmetries, while additionally maintaining approximate angular momentum conservation. Our approach starts from a rigorously consistent interpolation theory, where we derive the evolution equations to enforce the appropriate conservation properties, at the sacrifice of full consistency in the momentum equation. Additionally, by exploiting the increased accuracy of the RK method's gradient, we formulate a simple limiter for the artificial viscosity that reduces the excess diffusion normally incurred by the ordinary SPH artificial viscosity. Collectively, we call our suite of modifications to the traditional SPH scheme Conservative Reproducing Kernel SPH, or CRKSPH. CRKSPH retains many benefits of traditional SPH methods (such as preserving Galilean invariance and manifest conservation of mass, momentum, and energy) while improving on many of the shortcomings of SPH, particularly the overly aggressive artificial viscosity and zeroth-order inaccuracy. We compare CRKSPH to two different modern SPH formulations (pressure based SPH and compatibly differenced SPH), demonstrating the advantages of our new formulation when modeling fluid mixing, strong shock, and adiabatic phenomena
    corecore