622 research outputs found
Ant Colony Heuristic for Mapping and Scheduling Tasks and Communications on Heterogeneous Embedded Systems
To exploit the power of modern heterogeneous multiprocessor embedded platforms on partitioned applications, the designer usually needs to efficiently map and schedule all the tasks and the communications of the application, respecting the constraints imposed by the target architecture. Since the problem is heavily constrained, common methods used to explore such design space usually fail, obtaining low-quality solutions. In this paper, we propose an ant colony optimization (ACO) heuristic that, given a model of the target architecture and the application, efficiently executes both scheduling and mapping to optimize the application performance. We compare our approach with several other heuristics, including simulated annealing, tabu search, and genetic algorithms, on the performance to reach the optimum value and on the potential to explore the design space. We show that our approach obtains better results than other heuristics by at least 16% on average, despite an overhead in execution time. Finally, we validate the approach by scheduling and mapping a JPEG encoder on a realistic target architecture
Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies
We have used high-throughput Illumina sequencing to identify novel recombinants between
deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1), which accumulate to
higher levels than DWV in both honeybees and Varroa destructor mites. The recombinants,
VDV-1VVD and VDV-1DVD, exhibit crossovers between the 5’-untranslated region (5’-UTR),
and/or the regions encoding the structural (capsid) and non-structural viral proteins. This
implies the genomes are modular and that each region may evolve independently, as
demonstrated in human enteroviruses. Individual honeybee pupae were infected with a
mixture of observed recombinants and DWV. The strong correlation between VDV-1DVD
levels in honeybee pupae and the associated mites was observed, suggesting that this
recombinant, with a DWV-derived 5’-UTR and non-structural protein region flanking VDV-
1-derived capsid encoding region, is better adapted to transmission between V. destructor and
honeybees than the parental DWV or a recombinant bearing the VDV-1-derived 5’-UTR
(VDV-1VVD)
Long maximal incremental tests accurately assess aerobic fitness in class II and III obese men.
This study aimed to compare two different maximal incremental tests with different time durations [a maximal incremental ramp test with a short time duration (8-12 min) (STest) and a maximal incremental test with a longer time duration (20-25 min) (LTest)] to investigate whether an LTest accurately assesses aerobic fitness in class II and III obese men. Twenty obese men (BMI≥35 kg.m-2) without secondary pathologies (mean±SE; 36.7±1.9 yr; 41.8±0.7 kg*m-2) completed an STest (warm-up: 40 W; increment: 20 W*min-1) and an LTest [warm-up: 20% of the peak power output (PPO) reached during the STest; increment: 10% PPO every 5 min until 70% PPO was reached or until the respiratory exchange ratio reached 1.0, followed by 15 W.min-1 until exhaustion] on a cycle-ergometer to assess the peak oxygen uptake [Formula: see text] and peak heart rate (HRpeak) of each test. There were no significant differences in [Formula: see text] (STest: 3.1±0.1 L*min-1; LTest: 3.0±0.1 L*min-1) and HRpeak (STest: 174±4 bpm; LTest: 173±4 bpm) between the two tests. Bland-Altman plot analyses showed good agreement and Pearson product-moment and intra-class correlation coefficients showed a strong correlation between [Formula: see text] (r=0.81 for both; p≤0.001) and HRpeak (r=0.95 for both; p≤0.001) during both tests. [Formula: see text] and HRpeak assessments were not compromised by test duration in class II and III obese men. Therefore, we suggest that the LTest is a feasible test that accurately assesses aerobic fitness and may allow for the exercise intensity prescription and individualization that will lead to improved therapeutic approaches in treating obesity and severe obesity
Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults
This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (p<0.01). Fat oxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (p<0.05). During whole exercise, a blunted lipolysis was found in O [lower glycerol/fat mass (FM) in O than in L (p ≤ 0.001)], likely associated with higher insulin concentrations in O than in L (p<0.01). Non-esterified fatty acids (NEFA) were significantly higher in O compared with L (p<0.05). Despite the blunted lipolysis, O presented higher NEFA availability, likely due to larger amounts of FM. Therefore, a lower Fat(max), a left-shifted and less dilated curve and a lower reliance on fat oxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O
Unusual sites of metastatic malignancy: case 1. Cardiac metastasis in hepatocellular carcinoma.
no abstract availabl
Improving cardiometabolic and mental health in women with gestational diabetes mellitus and their offspring: study protocol for <i>MySweetHeart Trial</i>, a randomised controlled trial.
Gestational diabetes mellitus (GDM) carries prenatal and perinatal risk for the mother and her offspring as well as longer-term risks for both the mother (obesity, diabetes, cardiovascular disease) and her child (obesity, type 2 diabetes). Compared with women without GDM, women with GDM are twice as likely to develop perinatal or postpartum depression. Lifestyle interventions for GDM are generally limited to physical activity and/or nutrition, often focus separately on the mother or the child and take place either during or after pregnancy, while their results are inconsistent. To increase efficacy of intervention, the multifactorial origins of GDM and the tight link between mental and metabolic as well as maternal and child health need to be heeded. This calls for an interdisciplinary transgenerational approach starting in, but continuing beyond pregnancy.
This randomised controlled trial will assess the effect of a multidimensional interdisciplinary lifestyle and psychosocial intervention aimed at improving the metabolic and mental health of 200 women with GDM and their offspring. Women with GDM at 24-32 weeks gestational age who understand French or English, and their offspring and partners can participate. The intervention components will be delivered on top of usual care during pregnancy and the first year postpartum. Metabolic and mental health outcomes will be measured at 24-32 weeks of pregnancy, shortly after birth and at 6-8 weeks and 1 year after childbirth. Data will be analysed using intention-to-treat analyses. The <i>MySweetHeart Trial</i> is linked to the <i>MySweetHeart Cohort</i> (clinicaltrials.gov/ct2/show/NCT02872974).
We will disseminate the findings through regional, national and international conferences and through peer-reviewed journals.
NCT02890693; Pre-results
- …
