6,422 research outputs found
Bias-Free Shear Estimation using Artificial Neural Networks
Bias due to imperfect shear calibration is the biggest obstacle when
constraints on cosmological parameters are to be extracted from large area weak
lensing surveys such as Pan-STARRS-3pi, DES or future satellite missions like
Euclid. We demonstrate that bias present in existing shear measurement
pipelines (e.g. KSB) can be almost entirely removed by means of neural
networks. In this way, bias correction can depend on the properties of the
individual galaxy instead on being a single global value. We present a
procedure to train neural networks for shear estimation and apply this to
subsets of simulated GREAT08 RealNoise data. We also show that circularization
of the PSF before measuring the shear reduces the scatter related to the PSF
anisotropy correction and thus leads to improved measurements, particularly on
low and medium signal-to-noise data. Our results are competitive with the best
performers in the GREAT08 competition, especially for the medium and higher
signal-to-noise sets. Expressed in terms of the quality parameter defined by
GREAT08 we achieve a Q = 40, 140 and 1300 without and 50, 200 and 1300 with
circularization for low, medium and high signal-to-noise data sets,
respectively.Comment: 19 pages, 8 figures; accepted for publication in Ap
A Dark Core in Abell 520
The rich cluster Abell 520 (z=0.201) exhibits truly extreme and puzzling
multi-wavelength characteristics. It may best be described as a "cosmic train
wreck." It is a major merger showing abundant evidence for ram pressure
stripping, with a clear offset in the gas distribution compared to the galaxies
(as in the bullet cluster 1E 0657-558). However, the most striking feature is a
massive dark core (721 h_70 M_sun/L_sun) in our weak lensing mass
reconstruction. The core coincides with the central X-ray emission peak, but is
largely devoid of galaxies. An unusually low mass to light ratio region lies
500 kpc to the east, and coincides with a shock feature visible in radio
observations of the cluster. Although a displacement between the X-ray gas and
the galaxy/dark matter distributions may be expected in a merger, a mass peak
without galaxies cannot be easily explained within the current collisionless
dark matter paradigm. Interestingly, the integrated gas mass fraction (~0.15),
mass-to-light ratio (220 h_70 M_sun/L_sun), and position on the X-ray
luminosity-temperature and mass-temperature relations are unremarkable. Thus
gross properties and scaling relations are not always useful indicators of the
dynamical state of clusters.Comment: 10 pages, 5 figures, accepted for publication in the Astrophysical
Journal, higher resolution version at http://visav.phys.uvic.ca/~amahdav
Propagating Residual Biases in Cosmic Shear Power Spectra
In this paper we derive a full expression for the propagation of
multiplicative and additive shape measurement biases into the cosmic shear
power spectrum. In doing so we identify several new terms that are associated
with selection effects, as well as cross-correlation terms between the
multiplicative and additive biases and the shear field. The computation of the
resulting bias in the shear power spectrum scales as the fifth power of the
maximum multipole considered. Consequently the calculation is unfeasible for
large l-modes, and the only tractable way to assess the full impact of shape
measurement biases on cosmic shear power spectrum is through forward modelling
of the effects. To linear order in bias parameters the shear power spectrum is
only affected by the mean of the multiplicative bias field over a survey and
the cross correlation between the additive bias field and the shear field. If
the mean multiplicative bias is zero then second order convolutive terms are
expected to be orders of magnitude smaller.Comment: 10 pages, accepted to the Open Journal of Astrophysic
First detection of galaxy-galaxy-galaxy lensing in RCS. A new tool for studying the matter environment of galaxy pairs
The weak gravitational lensing effect, small coherent distortions of galaxy
images by means of a gravitational tidal field, can be used to study the
relation between the matter and galaxy distribution. In this context, weak
lensing has so far only been used for considering a second-order correlation
function that relates the matter density and galaxy number density as a
function of separation. We implement two new, third-order correlation functions
that have recently been suggested in the literature, and apply them to the
Red-Sequence Cluster Survey. We demonstrate that it is possible, even with
already existing data, to make significant measurements of third-order lensing
correlations. We develop an optimised computer code for the correlation
functions. To test its reliability a set of tests are performed. The
correlation functions are transformed to aperture statistics, which allow easy
tests for remaining systematics in the data. In order to further verify the
robustness of our measurement, the signal is shown to vanish when randomising
the source ellipticities. Finally, the lensing signal is compared to crude
predictions based on the halo-model. On angular scales between roughly 1 arcmin
and 11 arcmin a significant third-order correlation between two lens positions
and one source ellipticity is found. We discuss this correlation function as a
novel tool to study the average matter environment of pairs of galaxies.
Correlating two source ellipticities and one lens position yields a less
significant but nevertheless detectable signal on a scale of 4 arcmin. Both
signals lie roughly within the range expected by theory which supports their
cosmological origin.[ABRIDGED]Comment: 15 pages, 12 figures, accepted by A&A; minor change
Constraints on Omega_m and sigma_8 from weak lensing in RCS fields
We have analysed 53 square degrees of imaging data from the Red-Sequence
Cluster Survey (RCS), and measured the excess correlations in the shapes of
galaxies on scales out to ~1.5 degrees. We separate the signal into an ``E''-
(lensing) and ``B''-mode (systematics), which allows us to study residual
systematics. On scales larger than 10 arcminutes, we find no ``B''-mode. On
smaller scales we find a small, but significant ``B''-mode. This signal is also
present when we select a sample of bright galaxies. These galaxies are rather
insensitive to observational distortions, and we therefore conclude that the
oberved ``B''-mode is likely to be caused by intrinsic alignments. We therefore
limit the cosmic shear analysis to galaxies with 22<R_C<24. We derive joint
constraints on Omega_m and sigma_8, by marginalizing over Gamma, Omega_Lambda
and the source redshift distribution, using different priors. We obtain a
conservative constraint of
(95% confidence). A better constraint is derived when we use Gaussian priors
redshift distribution. For this choice of priors, we find
(95% confidence). Using our
setof Gaussian priors, we find that we can place a lower bound on Gamma:
Gamma>0.1+0.16\Omega_m$ (95% confidence). Comparison of the RCS results with
three other recent cosmic shear measurements shows excellent agreement. The
current weak lensing results are also in good agreement with CMB measurements,
when we allow the reionization optical depth tau and the spectral index n_s to
vary. We present a simple demonstration of how the weak lensing results can be
used as a prior in the parameter estimation from CMB measurements to derive
constraints on the reionization optical depth tau. (abridged)Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical
Journa
Characterization of femtosecond laser written waveguides for integrated biochemical sensing
Fluorescence detection is known to be one of the most sensitive among the different optical sensing techniques. This work focuses on excitation and detection of fluorescence emitted by DNA strands labeled with fluorescent dye molecules that can be excited at a specific wavelength. Excitation occurs via optical channel waveguides written with femtosecond laser pulses applied coplanar with a microfluidic channel on a glass chip. The waveguides are optically characterized in order to facilitate the design of sensing structures which can be applied for monitoring the spatial separation of biochemical\ud
species as a result of capillary electrophoresis
Towards an understanding of third-order galaxy-galaxy lensing
Third-order galaxy-galaxy lensing (G3L) is a next generation galaxy-galaxy
lensing technique that either measures the excess shear about lens pairs or the
excess shear-shear correlations about lenses. It is clear that these statistics
assess the three-point correlations between galaxy positions and projected
matter density. For future applications of these novel statistics, we aim at a
more intuitive understanding of G3L to isolate the main features that possibly
can be measured. We construct a toy model ("isolated lens model"; ILM) for the
distribution of galaxies and associated matter to determine the measured
quantities of the two G3L correlation functions and traditional galaxy-galaxy
lensing (GGL) in a simplified context. The ILM presumes single lens galaxies to
be embedded inside arbitrary matter haloes that, however, are statistically
independent ("isolated") from any other halo or lens position. In the ILM, the
average mass-to-galaxy number ratio of clusters of any size cannot change. GGL
and galaxy clustering alone cannot distinguish an ILM from any more complex
scenario. The lens-lens-shear correlator in combination with second-order
statistics enables us to detect deviations from a ILM, though. This can be
quantified by a difference signal defined in the paper. We demonstrate with the
ILM that this correlator picks up the excess matter distribution about galaxy
pairs inside clusters. The lens-shear-shear correlator is sensitive to
variations among matter haloes. In principle, it could be devised to constrain
the ellipticities of haloes, without the need for luminous tracers, or maybe
even random halo substructure. [Abridged]Comment: 14 pages, 3 figures, 1 table, accepted by A&A; some
"lens-shear-shear" were falsely "lens-lens-shear
- …
