7 research outputs found

    The indigenous origin of Witwatersrand "carbon"

    No full text
    In the Witwatersrand approximately 40% of the gold is intimately associated with so-called "carbon" in "carbon seam reefs, which occur in over a dozen paleoplacers, many of them concentrated at two stratigraphic levels in the 7000-m-thick succession of Archean siliciclastic sedimentary rocks. This is reduced carbon, present as kerogen admixed in various proportions with derivative (now solid) bitumen(s). Oil generation and migration were active geological processes during Early Earth history. Numerous possible source rocks for oil generation, including the carbon seams themselves, occur within the Witwatersrand basin. In the Witwatersrand ore, oil-bearing fluid inclusions are also present, derived like the bitumen, by thermal maturation of the kerogen. The presence of kerogen and bitumen in the Witwatersrand sedimentary rocks, together with a wealth of observations on the spatial distribution of the carbon seams confirm that the carbon originated in situ from living organisms in microbial mat cover, as opposed to flowing in from elsewhere as liquid hydrocarbons as some researchers have suggested. Paleochannels, which truncated auriferous carbon seams early in the depositional history, are of widespread occurrence, and micro-synsedimentary faults offset carbon seams. The carbon seams are thus indigenous biogenic markers that grew contemporaneously with placer development. The various features highlighting the nature and spatial distribution of Witwatersrand carbon seams provide a classic case where field evidence trumps laboratory data in the reconstruction of geological processes.14 page(s

    Sulfur Isotope Evidence for Penetration of MVT Fluids into Igneous Basement Rocks, Southeast Missouri, USA

    No full text
    Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in δ34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar δ34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (δ34S approaching 25‰) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (δ34S \u3c 5‰) may reflect fluids moving through underlying granitic basement. Two areas containing Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The δ34S values of West Dome sulfides are 0.9 to 6.5‰ and pyrite-chalcopyrite indicate a temperature of 525° ± 50°C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, δ34S values of Central Dome sulfides are 9.4 to 20.0‰ and pyrite-chalcopyrite indicate temperatures of 275° ± 50°C. Similar δ34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary, but in southeast Missouri, evidence exists for structurally controlled MVT fluid movement \u3e 600 m vertically through underlying Precambrian igneous rocks. Such basement involvement has been suggested for other carbonate-hosted base-metal districts (e.g. Irish base metal deposits) and should be considered an integral part of the ore-forming process in southeast Missouri

    Computing wind compensated launcher settings for unguided rockets

    No full text

    Sorghum Transformation: Overview and Utility

    Get PDF
    Over the past decade genomics resources available for sorghum have rapidly expanded (Paterson Int J Plant Genomics 2008:6, 2008), these resources, coupled with the recent completion of the genome sequence which is relatively small in size (730 Mb) (Paterson et al. Nature 457:551–556, 2009) makes sorghum a rather attractive species to study. Moreover, the USDA germplasm system maintains 42,614 accessions, of which more than 800 exotic landraces have been converted to day length-insensitive lines to facilitate their use in breeding programs. In addition, a set of EMS mutation stocks developed by the USDA Plant Stress and Germplasm Development Unit in Lubbock, TX (Xin et al. Bioenerg Res 2:10–16, 2009) will be a valuable resource for functional genomics studies in sorghum. However, in order to be a robust system for study a suite of functional genomics tools are necessary to complement these other resources to aid in down-stream hypothesis testing. A key functional genomics tool is the ability to modulate gene expression through the introduction of transgenic genetic elements. This is exemplified by recent work (Cook et al. Plant Cell 22:867–887, 2010) in which RNAi experiments were employed to specifically reduced expression of two alkylresorcinol synthases to demonstrate their role in the synthesis of the allelopathic molecule sorgoleone. In addition to its value as a functional genomics tool, plant transformation offers a route to broaden access to novel input and output traits for sorghum breeding programs
    corecore