3,782 research outputs found
Dynamics of a cold trapped ion in a Bose-Einstein condensate
We investigate the interaction of a laser-cooled trapped ion (Ba or
Rb) with an optically confined Rb Bose-Einstein condensate (BEC).
The system features interesting dynamics of the ion and the atom cloud as
determined by their collisions and their motion in their respective traps.
Elastic as well as inelastic processes are observed and their respective cross
sections are determined. We demonstrate that a single ion can be used to probe
the density profile of an ultracold atom cloud.Comment: 4 pages, 5 figure
Coherent optical transfer of Feshbach molecules to a lower vibrational state
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have
coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply
bound vibrational quantum level. Our measurements indicate a high transfer
efficiency of up to 87%. As the molecules are held in an optical lattice with
not more than a single molecule per lattice site, inelastic collisions between
the molecules are suppressed and we observe long molecular lifetimes of about 1
s. Using STIRAP we have created quantum superpositions of the two molecular
states and tested their coherence interferometrically. These results represent
an important step towards Bose-Einstein condensation (BEC) of molecules in the
vibrational ground state.Comment: 4 pages, 5 figure
Cruising through molecular bound state manifolds with radio frequency
The emerging field of ultracold molecules with their rich internal structure
is currently attracting a lot of interest. Various methods have been developed
to produce ultracold molecules in pre-set quantum states. For future
experiments it will be important to efficiently transfer these molecules from
their initial quantum state to other quantum states of interest. Optical Raman
schemes are excellent tools for transfer, but can be involved in terms of
equipment, laser stabilization and finding the right transitions. Here we
demonstrate a very general and simple way for transfer of molecules from one
quantum state to a neighboring quantum state with better than 99% efficiency.
The scheme is based on Zeeman tuning the molecular state to avoided level
crossings where radio-frequency transitions can then be carried out. By
repeating this process at different crossings, molecules can be successively
transported through a large manifold of quantum states. As an important
spin-off of our experiments, we demonstrate a high-precision spectroscopy
method for investigating level crossings.Comment: 5 pages, 5 figures, submitted for publicatio
Atom-molecule dark states in a Bose-Einstein condensate
We have created a dark quantum superposition state of a Rb Bose-Einstein
condensate (BEC) and a degenerate gas of Rb ground state molecules in a
specific ro-vibrational state using two-color photoassociation. As a signature
for the decoupling of this coherent atom-molecule gas from the light field we
observe a striking suppression of photoassociation loss. In our experiment the
maximal molecule population in the dark state is limited to about 100 Rb
molecules due to laser induced decay. The experimental findings can be well
described by a simple three mode model.Comment: 4 pages, 6 figure
Fractal Conductance Fluctuations in Gold--Nanowires
A detailed analysis of magneto-conductance fluctuations of quasiballistic
gold-nanowires of various lengths is presented. We find that the variance
when analyzed for much
smaller than the correlation field varies according to with indicating that the graph of
vs. is fractal. We attribute this behavior to the existence of
long-lived states arising from chaotic trajectories trapped close to regular
classical orbits. We find that decreases with increasing length of the
wires.Comment: 5 pages, Revtex with epsf, 4 Postscript figures, final version
accepted as Phys. Rev. Let
Speech Communication
Contains reports on six research projects.U. S. Air Force Command and Control Development Division under Contract AF19(604)-6102National Science Foundatio
Recommended from our members
Visual Analytics for Understanding Spatial Situations from Episodic Movement Data
Continuing advances in modern data acquisition techniques result in rapidly growing amounts of geo-referenced data about moving objects and in emergence of new data types. We define episodic movement data as a new complex data type to be considered in the research fields relevant to data analysis. In episodic movement data, position measurements may be separated by large time gaps, in which the positions of the moving objects are unknown and cannot be reliably reconstructed. Many of the existing methods for movement analysis are designed for data with fine temporal resolution and cannot be applied to discontinuous trajectories. We present an approach utilizing Visual Analytics methods to explore and understand the temporal variation of spatial situations derived from episodic movement data by means of spatio-temporal aggregation. The situations are defined in terms of the presence of moving objects in different places and in terms of flows (collective movements) among the places. The approach, which combines interactive visual displays with clustering of the spatial situations, is presented by example of a real dataset collected by Bluetooth sensors
Repulsively bound atom pairs in an optical lattice
Throughout physics, stable composite objects are usually formed via
attractive forces, which allow the constituents to lower their energy by
binding together. Repulsive forces separate particles in free space. However,
in a structured environment such as a periodic potential and in the absence of
dissipation, stable composite objects can exist even for repulsive
interactions. Here we report on the first observation of such an exotic bound
state, comprised of a pair of ultracold atoms in an optical lattice. Consistent
with our theoretical analysis, these repulsively bound pairs exhibit long
lifetimes, even under collisions with one another. Signatures of the pairs are
also recognised in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional condensed
matter systems of such repulsively bound pairs, due to the presence of strong
decay channels. These results exemplify on a new level the strong
correspondence between the optical lattice physics of ultracold bosonic atoms
and the Bose-Hubbard model, a correspondence which is vital for future
applications of these systems to the study of strongly correlated condensed
matter systems and to quantum information.Comment: 5 pages, 4 figure
Recommended from our members
Constructing Spaces and Times for Tactical Analysis in Football
A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts
- …
