47,829 research outputs found

    A Fast Blind Impulse Detector for Bernoulli-Gaussian Noise in Underspread Channel

    Full text link
    The Bernoulli-Gaussian (BG) model is practical to characterize impulsive noises that widely exist in various communication systems. To estimate the BG model parameters from noise measurements, a precise impulse detection is essential. In this paper, we propose a novel blind impulse detector, which is proven to be fast and accurate for BG noise in underspread communication channels.Comment: v2 to appear in IEEE ICC 2018, Kansas City, MO, USA, May 2018 Minor erratums added in v

    Extending the Broad Histogram Method for Continuous Systems

    Full text link
    We propose a way of extending the Broad Histogram Monte Carlo method (BHMC) to systems with continuous degrees of freedom, and we apply these ideas to investigate the three-dimensional XY-model. Our method gives results in excellent agreement with Metropolis and Histogram Monte Carlo simulations and calculates for the whole temperature range 1.2<T<4.7 using only 2 times more computer effort than the Histogram method for the range 2.1<T<2.2. Our way of treatment is general, it can also be applied to other systems with continuous degrees of freedom.Comment: LaTex, 5 pages, 2 eps figure

    The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons?

    Get PDF
    In the majority of the literature on plasma shock waves, electrons play the role of "ghost particles," since their contribution to mass and momentum flows is negligible, and they have been treated as only taking care of the electric plasma neutrality. In some more recent papers, however, electrons play a new important role in the shock dynamics and thermodynamics, especially at the solar-wind termination shock. They react on the shock electric field in a very specific way, leading to suprathermal nonequilibrium distributions of the downstream electrons, which can be represented by a kappa distribution function. In this paper, we discuss why this anticipated hot electron population has not been seen by the plasma detectors of the Voyager spacecraft downstream of the solar-wind termination shock. We show that hot nonequilibrium electrons induce a strong negative electric charge-up of any spacecraft cruising through this downstream plasma environment. This charge reduces electron fluxes at the spacecraft detectors to nondetectable intensities. Furthermore, we show that the Debye length λDκ\lambda _{\mathrm D}^{\kappa} grows to values of about λDκ/λD106\lambda _{\mathrm D}^{\kappa}/\lambda _{\mathrm D}\simeq 10^{6} compared to the classical value λD\lambda _{\mathrm D} in this hot-electron environment. This unusual condition allows for the propagation of a certain type of electrostatic plasma waves that, at very large wavelengths, allow us to determine the effective temperature of the suprathermal electrons directly by means of the phase velocity of these waves. At moderate wavelengths, the electron-acoustic dispersion relation leads to nonpropagating oscillations with the ion-plasma frequency ωp\omega _{\mathrm p} , instead of the traditional electron plasma frequency.Comment: 6 pages, 2 figure

    Context-aware Cluster Based Device-to-Device Communication to Serve Machine Type Communications

    Full text link
    Billions of Machine Type Communication (MTC) devices are foreseen to be deployed in next ten years and therefore potentially open a new market for next generation wireless network. However, MTC applications have different characteristics and requirements compared with the services provided by legacy cellular networks. For instance, an MTC device sporadically requires to transmit a small data packet containing information generated by sensors. At the same time, due to the massive deployment of MTC devices, it is inefficient to charge their batteries manually and thus a long battery life is required for MTC devices. In this sense, legacy networks designed to serve human-driven traffics in real time can not support MTC efficiently. In order to improve the availability and battery life of MTC devices, context-aware device-to-device (D2D) communication is exploited in this paper. By applying D2D communication, some MTC users can serve as relays for other MTC users who experience bad channel conditions. Moreover, signaling schemes are also designed to enable the collection of context information and support the proposed D2D communication scheme. Last but not least, a system level simulator is implemented to evaluate the system performance of the proposed technologies and a large performance gain is shown by the numerical results

    The Effectiveness of Paraphrasing Strategy in Increasing University Students' Reading Comprehension and Writing Achievement

    Full text link
    Reading comprehension and writing as the crucial skills must be instructed effectively in order to engage the students in the meaningful teaching and learning process. One of the ways to increase students' reading comprehension and writing achievement is by the use of paraphrasing strategy in the classroom instruction. Through the application of the paraphrasing strategy, it is easy for the students to internalize the information of the original source comprehensively; thus, students' reading comprehension achievement is increased. In relation to the improvement of students' reading comprehension achievement, students' writing achievement is also increased by the use of paraphrasing strategy since the students can rewrite the text in to their own writing style. Therefore, the use of paraphrasing strategy is considered as one of the beneficial ways used to enhance students' reading comprehension and writing achievement
    corecore