5,888 research outputs found
Adversarial Deep Structured Nets for Mass Segmentation from Mammograms
Mass segmentation provides effective morphological features which are
important for mass diagnosis. In this work, we propose a novel end-to-end
network for mammographic mass segmentation which employs a fully convolutional
network (FCN) to model a potential function, followed by a CRF to perform
structured learning. Because the mass distribution varies greatly with pixel
position, the FCN is combined with a position priori. Further, we employ
adversarial training to eliminate over-fitting due to the small sizes of
mammogram datasets. Multi-scale FCN is employed to improve the segmentation
performance. Experimental results on two public datasets, INbreast and
DDSM-BCRP, demonstrate that our end-to-end network achieves better performance
than state-of-the-art approaches.
\footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}Comment: Accepted by ISBI2018. arXiv admin note: substantial text overlap with
arXiv:1612.0597
Fundamental studies in geodynamics
Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix
Advanced Turboprop Project
At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987
Characterization of cells of amniotic fluids by immunological identification of intermediate-sized filaments: Presence of cells of different tissue origin
Antibodies against intermediate-sized filaments, of the prekeratin or vimentin type, were used to investigate the presence of these filaments by indirect immunofluorescence microscopy in cultured and non-cultured amniotic fluid cells, in frozen sections of the placenta and in isolated cells of the amniotic epithelium. Two major classes of cells can be cultured from amniotic fluids, namely cells of epithelial origin containing filaments of the prekeratin type and cells of different origin which contain filaments of the vimentin type but are negative when tested with antibodies to epidermal prekeratin. The presence of prekeratin type filaments correlates with the morphology of colonies of amniotic fluid cell cultures in vitro as classified by Hoehn et al. (1974). Cells of E-type colonies are shown to be of epithelial origin. In contrast our data indicate a different origin of almost all cells of F-type colonies and of the large majority of cells of AF-type colonies. Cells of epithelial origin and positively stained with antibodies to epidermal prekeratin are occasionally scattered in F-type colonies and in variable percentages (up to 30%) in AF-type colonies. Surprisingly, cryostat sections of the amniotic epithelium and isolated groups of amniotic cells showed positive reactions with both antibodies to vimentin and prekeratin. The possibility that amniotic cells may be different from other epithelial cells in that they contain both types of filaments simultaneously already in situ is presently under investigation
Effect of damper on overall and blade-element performance of a compressor rotor having a tip speed of 1151 feet per second and an aspect ratio of 3.6
The overall and blade-element performance of two configurations of a moderately high aspect ratio transonic compressor rotor are presented. The subject rotor has conventional blade dampers. The performance is compared with a rotor utilizing dual wire friction dampers. At design speed the subject achieved a pressure ratio of 1.52 and efficiency of 0.89 at a near design weight flow of 72.1 pounds per second. The rotor with wire dampers gave consistently higher pressure ratios at each speed, but efficiencies for the two rotors were about the same. Stall margin for the subject rotor was 20.4 percent, but for the wire damped rotor only 4.0 percent
- …
