67 research outputs found

    Increased circulating ANG II and TNF-α represents important risk factors in obese Saudi adults with hypertension irrespective of diabetic status and BMI

    Get PDF
    Central adiposity is a significant determinant of obesity-related hypertension risk, which may arise due to the pathogenic inflammatory nature of the abdominal fat depot. However, the influence of pro-inflammatory adipokines on blood pressure in the obese hypertensive phenotype has not been well established in Saudi subjects. As such, our study investigated whether inflammatory factors may represent useful biomarkers to delineate hypertension risk in a Saudi cohort with and without hypertension and/or diabetes mellitus type 2 (DMT2). Subjects were subdivided into four groups: healthy lean controls (age: 47.9±5.1 yr; BMI: 22.9±2.1 Kg/m2), non-hypertensive obese (age: 46.1±5.0 yr; BMI: 33.7±4.2 Kg/m2), hypertensive obese (age: 48.6±6.1 yr; BMI: 36.5±7.7 Kg/m2) and hypertensive obese with DMT2 (age: 50.8±6.0 yr; BMI: 35.3±6.7 Kg/m2). Anthropometric data were collected from all subjects and fasting blood samples were utilized for biochemical analysis. Serum angiotensin II (ANG II) levels were elevated in hypertensive obese (p<0.05) and hypertensive obese with DMT2 (p<0.001) compared with normotensive controls. Systolic blood pressure was positively associated with BMI (p<0.001), glucose (p<0.001), insulin (p<0.05), HOMA-IR (p<0.001), leptin (p<0.01), TNF-α (p<0.001) and ANG II (p<0.05). Associations between ANG II and TNF-α with systolic blood pressure remained significant after controlling for BMI. Additionally CRP (p<0.05), leptin (p<0.001) and leptin/adiponectin ratio (p<0.001) were also significantly associated with the hypertension phenotype. In conclusion our data suggests that circulating pro-inflammatory adipokines, particularly ANG II and, TNF-α, represent important factors associated with a hypertension phenotype and may directly contribute to predicting and exacerbating hypertension risk

    Quantification of various phosphatidylcholines in liposomes by enzymatic assay

    No full text
    The purpose of this research was to adapt a colorimetric, phospholipase D-based serum-phospholipid assay for the quantification of phosphatidylcholine (PC) in liposomes using a microtitre plate reader. PC from natural egg PC liposomes was quantified reliably. In contrast, poor sensitivity was found for liposomes composed of saturated PCs (dipalmitoyl-phosphatidylcholine [DPPC], hydrogenated egg PC). Triton X-100 was then added to the liposomes followed by heating above the phase transition temperature. This modified sample preparation resulted in recoveries of 102.6%±1.0%, 104.4%±7.6%, and 109.4%±3.2% for E80, E80-3/cholesterol, and DPPC liposomes, respectively. Absolute quantification of unknown PCs against a choline chloride standard is feasible, but relative measurements against the very same PC are recommended wheneve possible. Validation experiments revealed an absolute quantification limit of 1.25 μg per assay, a good linearity in the range of 25 to 1000μg/mL PC (r2≥0.9990) and a quite high accuracy (99.8%–101.4% of theory) and precision (relative standard deviation ≤3.2%) for all 3 PCs studied. The method is thus regarded as suitable for sensitive, rapid, and reliable routine quantification of PCs in liposomes
    • …
    corecore