4,306 research outputs found
Tunable joint measurements in the dispersive regime of cavity QED
Joint measurements of multiple qubits have been shown to open new
possibilities for quantum information processing. Here, we present an approach
based on homodyne detection to realize such measurements in the dispersive
regime of cavity/circuit QED. By changing details of the measurement, the
readout can be tuned from extracting only single-qubit to only multi-qubit
properties. We obtain a reduced stochastic master equation describing this
measurement and its effect on the qubits. As an example, we present results
showing parity measurements of two qubits. In this situation, measurement of an
initially unentangled state can yield with near unit probability a state of
significant concurrence.Comment: 4 pages, 4 figure
Robust randomized benchmarking of quantum processes
We describe a simple randomized benchmarking protocol for quantum information
processors and obtain a sequence of models for the observable fidelity decay as
a function of a perturbative expansion of the errors. We are able to prove that
the protocol provides an efficient and reliable estimate of an average
error-rate for a set operations (gates) under a general noise model that allows
for both time and gate-dependent errors. We determine the conditions under
which this estimate remains valid and illustrate the protocol through numerical
examples.Comment: 4+ pages, 1 figure, and 1 tabl
Supervised learning with quantum enhanced feature spaces
Machine learning and quantum computing are two technologies each with the
potential for altering how computation is performed to address previously
untenable problems. Kernel methods for machine learning are ubiquitous for
pattern recognition, with support vector machines (SVMs) being the most
well-known method for classification problems. However, there are limitations
to the successful solution to such problems when the feature space becomes
large, and the kernel functions become computationally expensive to estimate. A
core element to computational speed-ups afforded by quantum algorithms is the
exploitation of an exponentially large quantum state space through controllable
entanglement and interference. Here, we propose and experimentally implement
two novel methods on a superconducting processor. Both methods represent the
feature space of a classification problem by a quantum state, taking advantage
of the large dimensionality of quantum Hilbert space to obtain an enhanced
solution. One method, the quantum variational classifier builds on [1,2] and
operates through using a variational quantum circuit to classify a training set
in direct analogy to conventional SVMs. In the second, a quantum kernel
estimator, we estimate the kernel function and optimize the classifier
directly. The two methods present a new class of tools for exploring the
applications of noisy intermediate scale quantum computers [3] to machine
learning.Comment: Fixed typos, added figures and discussion about quantum error
mitigatio
Model for monitoring of a charge qubit using a radio-frequency quantum point contact including experimental imperfections
The extension of quantum trajectory theory to incorporate realistic
imperfections in the measurement of solid-state qubits is important for quantum
computation, particularly for the purposes of state preparation and
error-correction as well as for readout of computations. Previously this has
been achieved for low-frequency (dc) weak measurements. In this paper we extend
realistic quantum trajectory theory to include radio frequency (rf) weak
measurements where a low-transparency quantum point contact (QPC), coupled to a
charge qubit, is used to damp a classical oscillator circuit. The resulting
realistic quantum trajectory equation must be solved numerically. We present an
analytical result for the limit of large dissipation within the oscillator
(relative to the QPC), where the oscillator slaves to the qubit. The rf+dc mode
of operation is considered. Here the QPC is biased (dc) as well as subjected to
a small-amplitude sinusoidal carrier signal (rf). The rf+dc QPC is shown to be
a low-efficiency charge-qubit detector, that may nevertheless be higher than
the dc-QPC (which is subject to 1/f noise).Comment: 12 pages, 2 colour figures. v3 is published version (minor changes
since v2
Trust and privacy in distributed work groups
Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and PredictionTrust plays an important role in both group cooperation and economic exchange. As new technologies emerge for communication and exchange, established mechanisms of trust are disrupted or distorted, which can lead to the breakdown of cooperation or to increasing fraud in exchange. This paper examines whether and how personal privacy information about members of distributed work groups influences individuals' cooperation and privacy behavior in the group. Specifically, we examine whether people use others' privacy settings as signals of trustworthiness that affect group cooperation. In addition, we examine how individual privacy preferences relate to trustworthy behavior. Understanding how people interact with others in online settings, in particular when they have limited information, has important implications for geographically distributed groups enabled through new information technologies. In addition, understanding how people might use information gleaned from technology usage, such as personal privacy settings, particularly in the absence of other information, has implications for understanding many potential situations that arise in pervasively networked environments.Preprin
The interpretation of non-Markovian stochastic Schr\"odinger equations as a hidden-variable theory
Do diffusive non-Markovian stochastic Schr\"odinger equations (SSEs) for open
quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A
66, 012108 (2002)] we investigated this question using the orthodox
interpretation of quantum mechanics. We found that the solution of a
non-Markovian SSE represents the state the system would be in at that time if a
measurement was performed on the environment at that time, and yielded a
particular result. However, the linking of solutions at different times to make
a trajectory is, we concluded, a fiction. In this paper we investigate this
question using the modal (hidden variable) interpretation of quantum mechanics.
We find that the noise function appearing in the non-Markovian SSE can
be interpreted as a hidden variable for the environment. That is, some chosen
property (beable) of the environment has a definite value even in the
absence of measurement on the environment. The non-Markovian SSE gives the
evolution of the state of the system ``conditioned'' on this environment hidden
variable. We present the theory for diffusive non-Markovian SSEs that have as
their Markovian limit SSEs corresponding to homodyne and heterodyne detection,
as well as one which has no Markovian limit.Comment: 9 page
Protecting superconducting qubits from external sources of loss and heat
We characterize a superconducting qubit before and after embedding it along
with its package in an absorptive medium. We observe a drastic improvement in
the effective qubit temperature and over a tenfold improvement in the
relaxation time up to 5.7 s. Our results suggest the presence of external
radiation inside the cryogenic apparatus can be a limiting factor for both
qubit initialization and coherence. We infer from simple calculations that
relaxation is not limited by thermal photons in the sample prior to embedding,
but by dissipation arising from quasiparticle generation.Comment: 3 figure
- …
