123,477 research outputs found

    Heavy Rainfall Warning Assessment Tool User Guide. Version 1.2

    Get PDF
    This report is a User Guide to a PC tool for assessing Heavy Rainfall Warnings. Development of the PC tool formed an important operational output of the Environment Agency and Met Office funded project: "Development of Rainfall Forecast Performance Monitoring Criteria. Phase 1: Development of Methodology and Algorithms" (Jones et al., 2003). The Heavy Rainfall Warning (HRW) Assessment Tool is a toolkit for Microsoft Excel. The tool allows the user to configure an assessment framework for a particular format of Heavy Rainfall Warning, enter and save data for forecasts and ground-truths, and generate a range of performance measures and other statistics for new and previously saved data. Summary tables are presented using Excel's PivotTable feature, from which charts can also be generated. Performance measures are provided to assess forecasts of heavy rainfall in continuous variable, categorical and probability form: these include bias, rmse, R-squared Efficiency, skill scores and the Continuous Brier Score

    Strapdown calibration and alignment study. Volume 2 - Procedural and parametric trade-off analyses document Final report

    Get PDF
    Parametric and procedural tradeoffs for alignment and calibration of inertial sensing uni

    Strapdown calibration and alignment study. Volume 2 - Procedural and parametric trade- off analyses document

    Get PDF
    Techniques for laboratory calibration and alignment of strapdown inertial sensing unit - procedural and parametric trade-off analyse

    Saturation of atomic transitions using sub-wavelength diameter tapered optical fibers in rubidium vapor

    Full text link
    We experimentally investigate ultralow-power saturation of the rubidium D2 transitions using a tapered optical fiber (TOF) suspended in a warm Rb vapor. A direct comparison of power-dependent absorption measurements for the TOF system with those obtained in a standard free-space vapor cell system highlights the differences in saturation behavior for the two systems. The effects of hyperfine pumping in the TOF system are found to be minimized due to the short atomic transit times through the highly confined evanescent optical mode guided by the TOF. The TOF system data is well-fit by a relatively simple empirical absorption model that indicates nanoWatt-level saturation powers.Comment: 6 pages, 6 figure

    Development of a semi-autonomous service robot with telerobotic capabilities

    Get PDF
    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research

    Bubble statistics and coarsening dynamics for quasi-two dimensional foams with increasing liquid content

    Get PDF
    We report on the statistics of bubble size, topology, and shape and on their role in the coarsening dynamics for foams consisting of bubbles compressed between two parallel plates. The design of the sample cell permits control of the liquid content, through a constant pressure condition set by the height of the foam above a liquid reservoir. We find that in the scaling state, all bubble distributions are independent not only of time but also of liquid content. For coarsening, the average rate decreases with liquid content due to the blocking of gas diffusion by Plateau borders inflated with liquid. By observing the growth rate of individual bubbles, we find that von Neumann's law becomes progressively violated with increasing wetness and with decreasing bubble size. We successfully model this behavior by explicitly incorporating the border blocking effect into the von Neumann argument. Two dimensionless bubble shape parameters naturally arise, one of which is primarily responsible for the violation of von Neumann's law for foams that are not perfectly dry

    Coarsening of Two Dimensional Foam on a Dome

    Get PDF
    In this paper we report on bubble growth rates and on the statistics of bubble topology for the coarsening of a dry foam contained in the narrow gap between two hemispheres. By contrast with coarsening in flat space, where six-sided bubbles neither grow nor shrink, we observe that six sided bubbles grow with time at a rate that depends on their size. This result agrees with the modification to von Neumann's law predicted by J.E. Avron and D. Levine. For bubbles with a different number of sides, except possibly seven, there is too much noise in the growth rate data to demonstrate a difference with coarsening in flat space. In terms of the statistics of bubble topology, we find fewer 3, 4, and 5 sided bubbles, and more 6 and greater sided bubbles, in comparison with the stationary distribution for coarsening in flat space. We also find good general agreement with the Aboav-Weaire law for the average number of sides of the neighbors of an n-sided bubble
    corecore