4,147 research outputs found
The Future of Particle Physics
After a very brief review of twentieth century elementary particle physics,
prospects for the next century are discussed. First and most important are
technological limits of opportunities; next, the future experimental program,
and finally the status of the theory, in particular its limitations as well as
its opportunities.Comment: Invited talk given at the International Conference on Fundamental
Sciences: Mathematics and Theoretical Physics, Singapore, 13-17 March 200
Fermion masses in noncommutative geometry
Recent indications of neutrino oscillations raise the question of the
possibility of incorporating massive neutrinos in the formulation of the
Standard Model (SM) within noncommutative geometry (NCG). We find that the NCG
requirement of Poincare duality constrains the numbers of massless quarks and
neutrinos to be unequal unless new fermions are introduced. Possible scenarios
in which this constraint is satisfied are discussed.Comment: 4 pages, REVTeX; typos are corrected in (19), "Possible Solutions"
and "Conclusion" are modified; additional calculational details are included;
references are update
Towards pp -> VVjj at NLO QCD: Bosonic contributions to triple vector boson production plus jet
In this work, some of the NLO QCD corrections for pp -> VVjj + X are
presented. A program in Mathematica based on the structure of FeynCalc which
automatically simplifies a set of amplitudes up to the hexagon level of rank 5
has been created for this purpose. We focus on two different topologies. The
first involves all the virtual contributions needed for quadruple electroweak
vector boson production, i.e. pp -> VVVV + X. In the second, the remaining
"bosonic" corrections to electroweak triple vector boson production with an
additional jet (pp -> VVV j + X) are computed. We show the factorization
formula of the infrared divergences of the bosonic contributions for VVVV and
VVVj production with V=(W,Z,gamma). Stability issues associated with the
evaluation of the hexagons up to rank 5 are studied. The CPU time of the
FORTRAN subroutines rounds the 2 milliseconds and seems to be competitive with
other more sophisticated methods. Additionally, in Appendix A the master
equations to obtain the tensor coefficients up to the hexagon level in the
external momenta convention are presented including the ones needed for small
Gram determinants.Comment: 48 pages,16 figure
Photon-Photon Scattering, Pion Polarizability and Chiral Symmetry
Recent attempts to detect the pion polarizability via analysis of
measurements are examined. The connection
between calculations based on dispersion relations and on chiral perturbation
theory is established by matching the low energy chiral amplitude with that
given by a full dispersive treatment. Using the values for the polarizability
required by chiral symmetry, predicted and experimental cross sections are
shown to be in agreement.Comment: 21 pages(+10 figures available on request), LATEX, UMHEP-38
Casimir bag energy in the stochastic approximation to the pure QCD vacuum
We study the Casimir contribution to the bag energy coming from gluon field
fluctuations, within the context of the stochastic vacuum model (SVM) of pure
QCD. After formulating the problem in terms of the generating functional of
field strength cumulants, we argue that the resulting predictions about the
Casimir energy are compatible with the phenomenologically required bag energy
term.Comment: 16 page
Effective Gravitational Field of Black Holes
The problem of interpretation of the \hbar^0-order part of radiative
corrections to the effective gravitational field is considered. It is shown
that variations of the Feynman parameter in gauge conditions fixing the general
covariance are equivalent to spacetime diffeomorphisms. This result is proved
for arbitrary gauge conditions at the one-loop order. It implies that the
gravitational radiative corrections of the order \hbar^0 to the spacetime
metric can be physically interpreted in a purely classical manner. As an
example, the effective gravitational field of a black hole is calculated in the
first post-Newtonian approximation, and the secular precession of a test
particle orbit in this field is determined.Comment: 8 pages, LaTeX, 1 eps figure. Proof of the theorem and typos
correcte
Quantum power correction to the Newton law
We have found the graviton contribution to the one-loop quantum correction to
the Newton law. This correction results in interaction decreasing with distance
as 1/r^3 and is dominated numerically by the graviton contribution. The
previous calculations of this contribution to the discussed effect are
demonstrated to be incorrect.Comment: 10 pages, 5 figures; numerical error corrected, few references adde
Non-isotropy in the CMB power spectrum in single field inflation
Contaldi et al. [1] have suggested that an initial period of kinetic energy
domination in single field inflation may explain the lack of CMB power at large
angular scales. We note that in this situation it is natural that there also be
a spatial gradient in the initial value of the inflaton field, and that this
can provide a spatial asymmetry in the observed CMB power spectrum, manifest at
low multipoles. We investigate the nature of this asymmetry and comment on its
relation to possible anomalies at low multipoles.Comment: 25 pages, 12 figures. In this revised version, we include the
Integrated Sachs-Wolfe effect, which was missing from the original. This
modifies some results in the low multipoles. The comparison with experiment
is slightly better but the change is not statistically significan
The anthropic principle and the mass scale of the Standard Model
In theories in which different regions of the universe can have different
values of the the physical parameters, we would naturally find ourselves in a
region which has parameters favorable for life. We explore the range of
anthropically allowed values of the mass parameter in the Higgs potential,
. For , the requirement that complex elements be formed
suggests that the Higgs vacuum expectation value must have a magnitude less
than 5 times its observed value. For , baryon stability requires that
, the Planck Mass. Smaller values of may or may not be
allowed depending on issues of element synthesis and stellar evolution. We
conclude that the observed value of is reasonably typical of the
anthropically allowed range, and that anthropic arguments provide a plausible
explanation for the closeness of the QCD scale and the weak scale.Comment: 28 pages, LaTeX. No changes from version originally submitted to
archive, except that problem with figure file has been correcte
- …
