1,303 research outputs found

    Gravitational waves from phase transition in split NMSSM

    Full text link
    We discuss gravitational wave signal from the strongly first order electroweak phase transition in the split NMSSM. We find that for sets of parameters predicting successful electroweak baryogenesis the gravitational wave signal can be within the reach of future experiments LISA, BBO and Ultimate DECIGO.Comment: 8 pages, 2 figures, published versio

    Invisible Higgs in weak bosons associative production with heavy quarks at LHC: probing mass and width

    Full text link
    New physics coupled to the Higgs boson may hide it in the standard decay channels to be investigated at LHC. We consider the models where new invisible dominant decay modes of the Higgs boson are responsible for this hiding. We propose to study at LHC the weak boson production associated with heavy quarks: our analysis revealed that boson pair invariant mass distribution is sensitive to both mass and width of the invisible Higgs boson, if it is not too far from the weak boson pair threshold. We present tree-level results for the most relevant cases of top quarks and of bottom quarks in Standard Model extensions with large bb-quark Yukawa coupling. We argue that QCD corrections do not spoil these results allowing for unambiguous extraction of the Higgs boson mass and width from the analysis of large enough amount of data.Comment: 26 pages, 14 figures, references adde

    Secondary electron emission yield in the limit of low electron energy

    Full text link
    Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the reflectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.Comment: 3 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Soliton-antisoliton pair production in particle collisions

    Full text link
    We propose general semiclassical method for computing the probability of soliton-antisoliton pair production in particle collisions. The method is illustrated by explicit numerical calculations in (1+1)-dimensional scalar field model. We find that the probability of the process is suppressed by an exponentially small factor which is almost constant at high energies.Comment: 4 pages, 3 figures, journal versio

    Chemical potential of quasi-equilibrium magnon gas driven by pure spin current

    Full text link
    We show experimentally that the spin current generated by the spin Hall effect drives the magnon gas in a ferromagnet into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation
    corecore