21 research outputs found
Diffuse retro-reflective imaging for improved mosquito tracking around human baited bednets
Robust imaging techniques for tracking insects have been essential tools in numerous laboratory and field studies on pests, beneficial insects and model systems. Recent innovations in optical imaging systems and associated signal processing have enabled detailed characterisation of nocturnal mosquito behaviour around bednets and improvements in bednet design, a global essential for protecting populations against malaria. Nonetheless, there remain challenges around ease of use for large scale in situ recordings and extracting data reliably in the critical areas of the bednet where the optical signal is attenuated. Here we introduce a retro-reflective screen at the back of the measurement volume, which can simultaneously provide diffuse illumination, and remove optical alignment issues whilst requiring only one-sided access to the measurement space. The illumination becomes significantly more uniform, although, noise removal algorithms are needed to reduce the effects of shot noise particularly across low intensity bednet regions. By systematically introducing mosquitoes in front and behind the bednet in lab experiments we are able to demonstrate robust tracking in these challenging areas. Overall, the retro-reflective imaging setup delivers mosquito segmentation rates in excess of 90% compared to less than 70% with back-lit systems
Simultaneous assessment of acidogenesis-mitigation and specific bacterial growth-inhibition by dentifrices
Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices
Pacing with restoration of respiratory sinus arrhythmia improved cardiac contractility and the left ventricular output: a translational study
Introduction: Respiratory sinus arrhythmia (RSA) is a prognostic value for patients with heart failure and is defined as a beat-to-beat variation of the timing between the heart beats. Patients with heart failure or patients with permanent cardiac pacing might benefit from restoration of RSA. The aim of this translational, proof-of-principle study was to evaluate the effect of pacing with or without restored RSAon parameters of LV cardiac contractility and the cardiac output
Increased cardiac output and left ventricular contractility in pigs paced with vs. without restored respiratory sinus arrhythmia - proof of principle of a newly developed pacing device
Heart rate variability (HRV) correlates with the severity and mortality of heart failure. Respiratory sinus arrhythmia (RSA) is defined by the dynamic increase and decrease in heart rate between breaths. Restoration of RSA might be beneficial in patients with heart failure and/or patients in need of permanent pacing. The aim of this translational, proof-of-principle study was to investigate the effect of pacing with or without RSA using a newly designed pacing device on the left ventricular contractility and cardiac output
Impact of selected ionic liquids on corrosion protection of mild steel in acidic medium: Experimental and computational studies
Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids
The present study reports the quantum chemical studies and quantitative structure activity relationship (QSAR) modeling of thirty ionic liquids utilized as chemical additives to repress mild steel degradation in 1.0 M HCl. Five molecular descriptors obtained from standardization of calculated descriptors together with the inhibitor con-centration were employed in model building. Multiple linear regression (MLR) and multilayer perceptron neural network (MLPNN) modeling were utilized in model construction. The optimal MLPNN model was developed using a network architecture of 6-3-5-1 with Levenberg-Marquardt as the learning algorithm. The model yielded an MSE of 29.9242, RMSE of 5.4703, MAD of 4.9628, MAPE of 5.7809, rMBE of 0.1202 and CoV of 0.0052. The MLPNN model displayed better predictive performance than the MLR model. Furthermore, developed models were applied to forecast the inhibition efficiencies of five novel ionic liquids. The theoretical inhibitors were found to be effective inhibitors of steel corrosion, showing over 80% inhibition efficiency.National Research Foundation of Korea (NRF) - Korean government (MSIT) [NRF-2018R1A5A1025137]The authors are grateful to the Centre for High Performance Computing (CHPC) , CSIR, South Africa for the access granted to computational resources for the study. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2018R1A5A1025137)
Triple-Zero Tillage and System Intensification lead to enhanced Productivity, Micronutrient Biofortification and Moisture-Stress Tolerance Ability in Chickpea in a Pearlmillet–Chickpea Cropping System of Semi-arid Climate
Abstract
Pearlmillet–chickpea cropping system (PCCS) is emerging as an important sequence in semi-arid regions of south-Asia owing to less water-requirement. However, chickpea (dry-season crop) faces comparatively acute soil moisture-deficit over pearlmillet (wet-season crop), limiting overall sustainability of PCCS. Hence, moisture-management (specifically in chickpea) and system intensification is highly essential for sustaining the PCCS in holistic manner. Since, conservation agriculture (CA) has emerged is an important climate-smart strategy to combat moisture-stress alongwith other production-vulnerabilities. Hence, current study comprised of three tillage systems in main-plots viz., Complete-CA with residue retention (CAc), Partial-CA without residue-retention (CAp), and Conventional-tillage (ConvTill) under three cropping systems in sub-plots viz., conventionally grown pearlmillet–chickpea cropping system (PCCS) alongwith two intensified systems i.e. pearlmillet-chickpea-fodder pearlmillet cropping system (PCFCS) and pearlmillet-chickpea-mungbean cropping system (PCMCS) in split-plot design. The investigation outcomes mainly focused on chickpea (dry-season crop) revealed that, on an average, there was a significant increase in chickpea grain yield under CAc to the tune of 27, 23.5 and 28.5% under PCCS, PCFCS and PCMCS, respectively over ConvTill. NPK uptake and micronutrient (Fe & Zn) biofortification in chickpea grains were again significantly higher under triple zero-tilled CAc plots with residue-retention; which was followed by triple zero-tilled CAp plots without residue-retention and the ConvTill plots. Likewise, CAc under PCMCS led to an increase in relative leaf water (RLW) content in chickpea by ~ 20.8% over ConvTill under PCCS, hence, ameliorating the moisture-stress effects. Interestingly, CA-management and system-intensification significantly enhanced the plant biochemical properties in chickpea viz., super-oxide dismuatage, ascorbate proxidase, catalase and glutathione reductase; thus, indicating their prime role in inducing moisture-stress tolerance ability in moisture-starved chickpea. Triple zero-tilled CAc plots also reduced the N2O fluxes in chickpea but with slightly higher CO2 emissions, however, curtailed the net GHG-emissions. Triple zero-tilled cropping systems (PCFCS & PCMCS) both under CAc and Cap led to a significant improvement in soil microbial population and soil enzymes activities (alkaline phosphatase, fluorescein diacetate, dehydrogenase). Overall, the PCCS system-intensification with mungbean (PCMCS) alongwith triple zero-tillage with residue-retention (CAc) may amply enhance the productivity, micronutrient biofortification and moisture-stress tolerance ability in chickpea besides propelling the ecological benefits under semi-arid agro-ecologies. However, the farmers should preserve a balance while adopting CAc or CAp where livestock equally competes for quality fodder.</jats:p
Triple-zero tillage and system intensification lead to enhanced productivity, micronutrient biofortification and moisture-stress tolerance ability in chickpea in a pearlmillet-chickpea cropping system of semi-arid climate
Abstract Pearlmillet-chickpea cropping system (PCCS) is emerging as an important sequence in semi-arid regions of south-Asia owing to less water-requirement. However, chickpea (dry-season crop) faces comparatively acute soil moisture-deficit over pearlmillet (wet-season crop), limiting overall sustainability of PCCS. Hence, moisture-management (specifically in chickpea) and system intensification is highly essential for sustaining the PCCS in holistic manner. Since, conservation agriculture (CA) has emerged is an important climate-smart strategy to combat moisture-stress alongwith other production-vulnerabilities. Hence, current study comprised of three tillage systems in main-plots viz., Complete-CA with residue retention (CAc), Partial-CA without residue-retention (CAp), and Conventional-tillage (ConvTill) under three cropping systems in sub-plots viz., conventionally grown pearlmillet-chickpea cropping system (PCCS) alongwith two intensified systems i.e. pearlmillet-chickpea-fodder pearlmillet cropping system (PCFCS) and pearlmillet-chickpea-mungbean cropping system (PCMCS) in split-plot design. The investigation outcomes mainly focused on chickpea (dry-season crop) revealed that, on an average, there was a significant increase in chickpea grain yield under CAc to the tune of 27, 23.5 and 28.5% under PCCS, PCFCS and PCMCS, respectively over ConvTill. NPK uptake and micronutrient (Fe and Zn) biofortification in chickpea grains were again significantly higher under triple zero-tilled CAc plots with residue-retention; which was followed by triple zero-tilled CAp plots without residue-retention and the ConvTill plots. Likewise, CAc under PCMCS led to an increase in relative leaf water (RLW) content in chickpea by ~ 20.8% over ConvTill under PCCS, hence, ameliorating the moisture-stress effects. Interestingly, CA-management and system-intensification significantly enhanced the plant biochemical properties in chickpea viz., super-oxide dismutase, ascorbate peroxidase, catalase and glutathione reductase; thus, indicating their prime role in inducing moisture-stress tolerance ability in moisture-starved chickpea. Triple zero-tilled CAc plots also reduced the N2O fluxes in chickpea but with slightly higher CO2 emissions, however, curtailed the net GHG-emissions. Triple zero-tilled cropping systems (PCFCS and PCMCS) both under CAc and Cap led to a significant improvement in soil microbial population and soil enzymes activities (alkaline phosphatase, fluorescein diacetate, dehydrogenase). Overall, the PCCS system-intensification with mungbean (PCMCS) alongwith triple zero-tillage with residue-retention (CAc) may amply enhance the productivity, micronutrient biofortification and moisture-stress tolerance ability in chickpea besides propelling the ecological benefits under semi-arid agro-ecologies. However, the farmers should preserve a balance while adopting CAc or CAp where livestock equally competes for quality fodder
Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors
Twenty pyridazine derivatives with previously reported experimental data were utilized to develop predictive models for the anticorrosion abilities of pyridazine-based compounds. The models were developed by using quantitative structure-activity relationship (QSAR) as a tool to relate essential molecular descriptors of the pyridazines with their experimental inhibition efficiencies. Chemical descriptors associated with frontier molecular orbitals (FMOs) were obtained using density functional theory (DFT) calculations, while others were obtained from additional calculations effected on Dragon 7 software. Five descriptors together with concentrations of the pyridazine inhibitors were used to develop the multiple linear regression (MLR) and artificial neural network (ANN) models. The optimal ANN model yielded the best results with 111.5910, 10.5637 and 10.2362 for MSE, RMSE and MAPE respectively. The results revealed that ANN gave better results than MLR model. The proposed models suggested that the adsorption of pyridazine derivatives is dependent on the five descriptors.Five pyridazine compounds were theoretically designed.MSIT (Ministry of Science and ICT), Korea, under the Grand Information and Communication Technology Research Center support program [IITP-2020-0-101741]The authors gratefully acknowledge the Centre for High Performance Computing (CHPC), CSIR, South Africa for providing access to computational resources with which DFT calculations were performed using Gaussian 09. This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information and Communication Technology Research Center support program (IITP-2020-0-101741) supervised by the IITP (Institute for Information and Communications, Technology Planning, and Evaluation)
