16,884 research outputs found

    Is Growing Livestock Inventories a Sustainable Initiative Given Phosphorus Crop Removal Regulations?

    Get PDF
    As environmental regulations continue to tighten and shift from nitrogen to phosphorus-based application standards for manure, phosphorus removal will become increasingly important for any state considering a livestock growth initiative. A framework was developed that can determine a state’s phosphorus removal capacity based upon production of livestock and crops and varying phosphorus removal standards. The state level results indicate that Indiana, along with Arizona, Illinois, Iowa, Kansas, and Texas, are well positioned to undertake a livestock growth initiative given that each state has excess phosphorous removal capacity.Agribusiness, Livestock Production/Industries,

    Design of a Direct-Detection Wind and Aerosol Lidar for Mars Orbit

    Get PDF
    The present knowledge of the Mars atmosphere is greatly limited by a lack of global measurements of winds and aerosols. Hence, measurements of height-resolved wind and aerosol profiles are a priority for new Mars orbiting missions. We have designed a direct-detection lidar (MARLI) to provide global measurements of dust, winds and water ice profiles from Mars orbit. From a 400-km polar orbit, the instrument is designed to provide wind and backscatter measurements with a vertical resolution of 2 km and with resolution of 2 in latitude along track. The instrument uses a single-frequency, seeded Nd:YAG laser that emits 4 mJ pulses at 1064 nm at a 250 Hz pulse rate. The receiver utilizes a 50-cm diameter telescope and a double edge Fabry-Prot etalon as a frequency discriminator to measure the Doppler shift of the aerosol-backscatter profiles. The receiver also includes a polarization-sensitive channel to detect the cross-polarized backscatter profiles from water ice. The receiver uses a sensitive 4 4 pixel HgCdTe avalanche photodiode array as a detector for all signals. Here we describe the measurement concept, instrument design, and calculate its performance for several cases of Mars atmospheric conditions. The calculations show that under a range of atmospheric conditions MARLI is capable of measuring wind speed profiles with random error of 24 m/s within the first three scale heights, enabling vertically resolved mapping of transport processes in this important region of the atmosphere

    Electric field inside a "Rossky cavity" in uniformly polarized water

    Full text link
    Electric field produced inside a solute by a uniformly polarized liquid is strongly affected by dipolar polarization of the liquid at the interface. We show, by numerical simulations, that the electric "cavity" field inside a hydrated non-polar solute does not follow the predictions of standard Maxwell's electrostatics of dielectrics. Instead, the field inside the solute tends, with increasing solute size, to the limit predicted by the Lorentz virtual cavity. The standard paradigm fails because of its reliance on the surface charge density at the dielectric interface determined by the boundary conditions of the Maxwell dielectric. The interface of a polar liquid instead carries a preferential in-plane orientation of the surface dipoles thus producing virtually no surface charge. The resulting boundary conditions for electrostatic problems differ from the traditional recipes, affecting the microscopic and macroscopic fields based on them. We show that relatively small differences in cavity fields propagate into significant differences in the dielectric constant of an ideal mixture. The slope of the dielectric increment of the mixture versus the solute concentration depends strongly on which polarization scenario at the interface is realized. A much steeper slope found in the case of Lorentz polarization also implies a higher free energy penalty for polarizing such mixtures.Comment: 9 pages, 8 figure

    Beam alignment techniques based on the current multiplication effect in photoconductors Third summary technical progress report, 15 Nov. 1966 - 15 Oct. 1967

    Get PDF
    Beam alignment techniques developed for infrared sensitive single crystal germanium to study multiplication effect in photoconductor

    Ray helicity: a geometric invariant for multi-dimensional resonant wave conversion

    Full text link
    For a multicomponent wave field propagating into a multidimensional conversion region, the rays are shown to be helical, in general. For a ray-based quantity to have a fundamental physical meaning it must be invariant under two groups of transformations: congruence transformations (which shuffle components of the multi-component wave field) and canonical transformations (which act on the ray phase space). It is shown that for conversion between two waves there is a new invariant not previously discussed: the intrinsic helicity of the ray
    corecore