1,493 research outputs found
Delayed Babcock-Leighton dynamos in the diffusion-dominated regime
Context. Solar dynamo models of Babcock-Leighton type typically assume the
rise of magnetic flux tubes to be instantaneous. Solutions with
high-magnetic-diffusivity have too short periods and a wrong migration of their
active belts. Only the low-diffusivity regime with advective meridional flows
is usually considered. Aims. In the present paper we discuss these assumptions
and applied a time delay in the source term of the azimuthally averaged
induction equation. This delay is set to be the rise time of magnetic flux
tubes which supposedly form at the tachocline. We study the effect of the
delay, which adds to the spacial non-locality a non-linear temporal one, in the
advective but particularly in the diffusive regime. Methods. Fournier et al.
(2017) obtained the rise time according to stellar parameters such as rotation,
and the magnetic field strength at the bottom of the convection zone. These
results allowed us to constrain the delay in the mean-field model used in a
parameter study. Results. We identify an unknown family of solutions. These
solutions self-quench, and exhibit longer periods than their non-delayed
counterparts. Additionally, we demonstrate that the non-linear delay is
responsible for the recover of the equatorward migration of the active belts at
high turbulent diffusivities. Conclusions. By introducing a non-linear temporal
non-locality (the delay) in a Babcock-Leighton dynamo model, we could obtain
solutions quantitatively comparable to the solar butterfly diagram in the
diffusion-dominated regime.Comment: 11 pages, 10 Figure
A Waveguide for Bose-Einstein Condensates
We report on the creation of Bose-Einstein condensates of Rb in a
specially designed hybrid, dipole and magnetic trap. This trap naturally allows
the coherent transfer of matter waves into a pure dipole potential waveguide
based on a doughnut beam. Specifically, we present studies of the coherence of
the ensemble in the hybrid trap and during the evolution in the waveguide by
means of an autocorrelation interferometer scheme. By monitoring the expansion
of the ensemble in the waveguide we observe a mean field dominated acceleration
on a much longer time scale than in the free 3D expansion. Both the
autocorrelation interference and the pure expansion measurements are in
excellent agreement with theoretical predictions of the ensemble dynamics
Hydrodynamic stability in accretion disks under the combined influence of shear and density stratification
The hydrodynamic stability of accretion disks is considered. The particular
question is whether the combined action of a (stable) vertical density
stratification and a (stable) radial differential rotation gives rise to a new
instability for nonaxisymmetric modes of disturbances. The existence of such an
instability is not suggested by the well-known Solberg-Hoiland criterion. It is
also not suggested by a local analysis for disturbances in general
stratifications of entropy and angular momentum which is presented in our
Section 2 confirming the results of the Solberg-Hoiland criterion also for
nonaxisymmetric modes within the frame of ideal hydrodynamics but only in the
frame of a short-wave approximation for small m. As a necessary condition for
stability we find that only conservative external forces are allowed to
influence the stable disk. As magnetic forces are never conservative, linear
disk instabilities should only exist in the magnetohydrodynamical regime which
indeed contains the magnetorotational instability as a much-promising
candidate. To overcome some of the used approximations in a numerical
approach,the equations of the compressible adiabatic hydrodynamics are
integrated imposing initial nonaxisymmetric velocity perturbations with m=1 to
m=200.
Only solutions with decaying kinetic energy are found. The system always
settles in a vertical equilibrium stratification according to pressure balance
with the gravitational potential of the central object. keywords: accretion
disks -- hydrodynamic instabilities -- turbulenceComment: 6 pages, 4 figures, 1 table, Astronomy and Astrophysics (subm.
Recommended from our members
Bayesian approach for auroral oval reconstruction from ground-based observations
Naked eye observations of aurorae might be used to obtain information on the large-scale magnetic field of the Earth at historic times. Their abundance may also help bridge gaps in observational time-series of proxies for solar activity such as the sunspot number or cosmogenic isotopes. With information derived from aurora observations like observing site, time of aurora sighting and position on the sky we can reconstruct the auroral oval. Since aurorae are correlated with geomagnetic indices like the Kp index, it is possible to obtain information about the terrestrial magnetic field in the form of the position of the magnetic poles as well as the magnetic disturbance level. Here we present a Bayesian approach to reconstruct the auroral oval from ground-based observations by using two different auroral oval models. With this method we can estimate the position of the magnetic poles in corrected geomagnetic coordinates as well as the Kp index. The method is first validated on synthetic observations before it is applied to four modern geomagnetic storms between 2003 and 2017 where ground-based reports and photographs were used to obtain the necessary information. Based on the four modern geomagnetic storms we have shown, that we are able to reconstruct the pole location with an average accuracy of ≈2° in latitude and ≈11° in longitude. The Kp index can be inferred with a precision of one class. The future goal is to employ the method to historical storms, where we expect somewhat higher uncertainties, since observations may be less accurate or not favorably distributed
Bose-Einstein condensation in a stiff TOP trap with adjustable geometry
We report on the realisation of a stiff magnetic trap with independently
adjustable trap frequencies, and , in the axial and radial
directions respectively. This has been achieved by applying an axial modulation
to a Time-averaged Orbiting Potential (TOP) trap. The frequency ratio of the
trap, , can be decreased continuously from the original
TOP trap value of 2.83 down to 1.6. We have transferred a Bose-Einstein
condensate (BEC) into this trap and obtained very good agreement between its
observed anisotropic expansion and the hydrodynamic predictions. Our method can
be extended to obtain a spherical trapping potential, which has a geometry of
particular theoretical interest.Comment: 4 pages, 3 figure
- …