26 research outputs found
Using serum metabolomics analysis to predict sub-clinical atherosclerosis in patients with SLE
Background: Patients with systemic lupus erythematosus (SLE) have an increased risk of developing cardiovascular disease (CVD) and 30-40% have sub-clinical atherosclerosis on vascular ultrasound scanning. Standard measurements of serum lipids in clinical practice do not predict CVD risk in patients with SLE. We hypothesise that more detailed analysis of lipoprotein taxonomy could identify better predictors of CVD risk in SLE. /
Methods: Eighty patients with SLE and no history of CVD underwent carotid and femoral ultrasound scans; 30 had atherosclerosis plaques (SLE-P) and 50 had no plaques (SLE-NP). Serum samples obtained at the time of the scan were analysed using a lipoprotein-focused metabolomics platform assessing 228 metabolites by nuclear magnetic resonance spectroscopy. Data was analysed using logistic regression and five binary classification models with 10-fold cross validation; decision tree, random forest, support vector machine and lasso (Least Absolute Shrinkage and Selection Operator) logistic regression with and without interactions. /
Results: Univariate logistic regression identified four metabolites associated with the presence of sub-clinical plaque; three subclasses of very low density lipoprotein (VLDL) (percentage of free cholesterol in medium and large VLDL particles and percentage of phospholipids in chylomicrons and extremely large VLDL particles) and Leucine. Together with age, these metabolites were also within the top features identified by the lasso logistic regression (with and without interactions) and random forest machine learning models. Logistic regression with interactions differentiated between SLE-P and SLE-NP with greatest accuracy (0.800). Notably, percentage of free cholesterol in large VLDL particles and age were identified by all models as being important to differentiate between SLE-P and SLE-NP patients. /
Conclusion: Serum metabolites are a promising biomarker for prediction of sub-clinical atherosclerosis development in SLE patients and could provide novel insight into mechanisms of early atherosclerosis development
Monocyte NOTCH2 expression predicts interferon-beta immunogenicity in multiple sclerosis patients
Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β–treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration
PROlocalizer: integrated web service for protein subcellular localization prediction
Subcellular localization is an important protein property, which is related to function, interactions and other features. As experimental determination of the localization can be tedious, especially for large numbers of proteins, a number of prediction tools have been developed. We developed the PROlocalizer service that integrates 11 individual methods to predict altogether 12 localizations for animal proteins. The method allows the submission of a number of proteins and mutations and generates a detailed informative document of the prediction and obtained results. PROlocalizer is available at http://bioinf.uta.fi/PROlocalizer/
NetCTLpan: pan-specific MHC class I pathway epitope predictions
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/
Identification of B Cell Epitopes of Alcohol Dehydrogenase Allergen of Curvularia lunata
BACKGROUND/OBJECTIVE: Epitope identification assists in developing molecules for clinical applications and is useful in defining molecular features of allergens for understanding structure/function relationship. The present study was aimed to identify the B cell epitopes of alcohol dehydrogenase (ADH) allergen from Curvularia lunata using in-silico methods and immunoassay. METHOD: B cell epitopes of ADH were predicted by sequence and structure based methods and protein-protein interaction tools while T cell epitopes by inhibitory concentration and binding score methods. The epitopes were superimposed on a three dimensional model of ADH generated by homology modeling and analyzed for antigenic characteristics. Peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by ELISA using individual and pooled patients' sera. RESULT: The homology model showed GroES like catalytic domain joined to Rossmann superfamily domain by an alpha helix. Stereochemical quality was confirmed by Procheck which showed 90% residues in most favorable region of Ramachandran plot while Errat gave a quality score of 92.733%. Six B cell (P1-P6) and four T cell (P7-P10) epitopes were predicted by a combination of methods. Peptide P2 (epitope P2) showed E(X)(2)GGP(X)(3)KKI conserved pattern among allergens of pathogenesis related family. It was predicted as high affinity binder based on electronegativity and low hydrophobicity. The computational methods employed were validated using Bet v 1 and Der p 2 allergens where 67% and 60% of the epitope residues were predicted correctly. Among B cell epitopes, Peptide P2 showed maximum IgE binding with individual and pooled patients' sera (mean OD 0.604±0.059 and 0.506±0.0035, respectively) followed by P1, P4 and P3 epitopes. All T cell epitopes showed lower IgE binding. CONCLUSION: Four B cell epitopes of C. lunata ADH were identified. Peptide P2 can serve as a potential candidate for diagnosis of allergic diseases
Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: A prospective multicohort study of the ABIRISK consortium
BACKGROUND: Biopharmaceutical products (BPs) are widely used to treat autoimmune diseases, but immunogenicity limits their efficacy for an important proportion of patients. Our knowledge of patient-related factors influencing the occurrence of antidrug antibodies (ADAs) is still limited. METHODS AND FINDINGS: The European consortium ABIRISK (Anti-Biopharmaceutical Immunization: prediction and analysis of clinical relevance to minimize the RISK) conducted a clinical and genomic multicohort prospective study of 560 patients with multiple sclerosis (MS, n = 147), rheumatoid arthritis (RA, n = 229), Crohn's disease (n = 148), or ulcerative colitis (n = 36) treated with 8 different biopharmaceuticals (etanercept, n = 84; infliximab, n = 101; adalimumab, n = 153; interferon [IFN]-beta-1a intramuscularly [IM], n = 38; IFN-beta-1a subcutaneously [SC], n = 68; IFN-beta-1b SC, n = 41; rituximab, n = 31; tocilizumab, n = 44) and followed during the first 12 months of therapy for time to ADA development. From the bioclinical data collected, we explored the relationships between patient-related factors and the occurrence of ADAs. Both baseline and time-dependent factors such as concomitant medications were analyzed using Cox proportional hazard regression models. Mean age and disease duration were 35.1 and 0.85 years, respectively, for MS; 54.2 and 3.17 years for RA; and 36.9 and 3.69 years for inflammatory bowel diseases (IBDs). In a multivariate Cox regression model including each of the clinical and genetic factors mentioned hereafter, among the clinical factors, immunosuppressants (adjusted hazard ratio [aHR] = 0.408 [95% confidence interval (CI) 0.253-0.657], p < 0.001) and antibiotics (aHR = 0.121 [0.0437-0.333], p < 0.0001) were independently negatively associated with time to ADA development, whereas infections during the study (aHR = 2.757 [1.616-4.704], p < 0.001) and tobacco smoking (aHR = 2.150 [1.319-3.503], p < 0.01) were positively associated. 351,824 Single-Nucleotide Polymorphisms (SNPs) and 38 imputed Human Leukocyte Antigen (HLA) alleles were analyzed through a genome-wide association study. We found that the HLA-DQA1*05 allele significantly increased the rate of immunogenicity (aHR = 3.9 [1.923-5.976], p < 0.0001 for the homozygotes). Among the 6 genetic variants selected at a 20% false discovery rate (FDR) threshold, the minor allele of rs10508884, which is situated in an intron of the CXCL12 gene, increased the rate of immunogenicity (aHR = 3.804 [2.139-6.764], p < 1 × 10-5 for patients homozygous for the minor allele) and was chosen for validation through a CXCL12 protein enzyme-linked immunosorbent assay (ELISA) on patient serum at baseline before therapy start. CXCL12 protein levels were higher for patients homozygous for the minor allele carrying higher ADA risk (mean: 2,693 pg/ml) than for the other genotypes (mean: 2,317 pg/ml; p = 0.014), and patients with CXCL12 levels above the median in serum were more prone to develop ADAs (aHR = 2.329 [1.106-4.90], p = 0.026). A limitation of the study is the lack of replication; therefore, other studies are required to confirm our findings. CONCLUSION: In our study, we found that immunosuppressants and antibiotics were associated with decreased risk of ADA development, whereas tobacco smoking and infections during the study were associated with increased risk. We found that the HLA-DQA1*05 allele was associated with an increased rate of immunogenicity. Moreover, our results suggest a relationship between CXCL12 production and ADA development independent of the disease, which is consistent with its known function in affinity maturation of antibodies and plasma cell survival. Our findings may help physicians in the management of patients receiving biotherapies
Strongly zero-dimensional bispaces
Let Cb be the admissible functorial quasi-uniformity on the completely regular bispaces which is spanned by the upper quasi-uniformity on the real line. Answering a question posed by B. Banaschewski and G. C. L. Brümmer in the affirmative we show that CbX is transitive for every strongly zero-dimensional bispace
Using Serum Metabolomics to Predict Development of Anti-drug Antibodies in Multiple Sclerosis Patients Treated With IFNβ
Background: Neutralizing anti-drug antibodies (ADA) can greatly reduce the efficacy of biopharmaceuticals used to treat patients with multiple sclerosis (MS). However, the biological factors pre-disposing an individual to develop ADA are poorly characterized. Thus, there is an unmet clinical need for biomarkers to predict the development of immunogenicity, and subsequent treatment failure. Up to 35% of MS patients treated with beta interferons (IFNβ) develop ADA. Here we use machine learning to predict immunogenicity against IFNβ utilizing serum metabolomics data.
Methods: Serum samples were collected from 89 MS patients as part of the ABIRISK consortium—a multi-center prospective study of ADA development. Metabolites and ADA were quantified prior to and after IFNβ treatment. Thirty patients became ADA positive during the first year of treatment (ADA+). We tested the efficacy of six binary classification models using 10-fold cross validation; k-nearest neighbors, decision tree, random forest, support vector machine and lasso (Least Absolute Shrinkage and Selection Operator) logistic regression with and without interactions.
Results: We were able to predict future immunogenicity from baseline metabolomics data. Lasso logistic regression with/without interactions and support vector machines were the most successful at identifying ADA+ or ADA– cases, respectively. Furthermore, patients who become ADA+ had a distinct metabolic response to IFNβ in the first 3 months, with 29 differentially regulated metabolites. Machine learning algorithms could also predict ADA status based on metabolite concentrations at 3 months. Lasso logistic regressions had the greatest proportion of correct classifications [F1 score (accuracy measure) = 0.808, specificity = 0.913]. Finally, we hypothesized that serum lipids could contribute to ADA development by altering immune-cell lipid rafts. This was supported by experimental evidence demonstrating that, prior to IFNβ exposure, lipid raft-associated lipids were differentially expressed between MS patients who became ADA+ or remained ADA–.
Conclusion: Serum metabolites are a promising biomarker for prediction of ADA development in MS patients treated with IFNβ, and could provide novel insight into mechanisms of immunogenicity