3,048 research outputs found

    Unconventional Supersymmetry at the Boundary of AdS_4 Supergravity

    Get PDF
    In this paper we perform, in the spirit of the holographic correspondence, a particular asymptotic limit of N=2, AdS_4 supergravity to N=2 supergravity on a locally AdS_3 boundary. Our boundary theory enjoys OSp(2|2) x SO(1,2) invariance and is shown to contain the D=3 super-Chern Simons OSp(2|2) theory considered in [Alvarez:2011gd] and featuring "unconventional local supersymmetry". The model constructed in that reference describes the dynamics of a spin-1/2 Dirac field in the absence of spin 3/2 gravitini and was shown to be relevant for the description of graphene, near the Dirac points, for specific spatial geometries. Our construction yields the model in [Alvarez:2011gd] with a specific prescription on the parameters. In this framework the Dirac spin-1/2 fermion originates from the radial components of the gravitini in D=4.Comment: 23 page

    N=2 Supergravity Lagrangian Coupled to Tensor Multiplets with Electric and Magnetic Fluxes

    Full text link
    We derive the full N=2 supergravity Lagrangian which contains a symplectic invariant scalar potential in terms of electric and magnetic charges. As shown in reference [1], the appearance of magnetic charges is allowed only if tensor multiplets are present and a suitable Fayet-Iliopoulos term is included in the fermion transformation laws. We generalize the procedure in the quoted reference by adding further a Fayet-Iliopoulos term which allows the introduction of electric charges in such a way that the potential and the equations of motion of the theory are symplectic invariant. The theory is further generalized to include an ordinary electric gauging and the form of the resulting scalar potential is given.Comment: 1+34 pages LaTeX, correction of a typo in the ungauged scalar potentia

    Supersymmetric completion of M-theory 4D-gauge algebra from twisted tori and fluxes

    Full text link
    We present the supersymmetric completion of the M-theory free differential algebra resulting from a compactification to four dimensions on a twisted seven-torus with 4-form and 7-form fluxes turned on. The super--curvatures are given and the local supersymmetry transformations derived. Dual formulations of the theory are discussed in connection with classes of gaugings corresponding to diverse choices of vacua. This also includes seven dimensional compactifications on more general spaces not described by group manifolds.Comment: 19 pages, LaTeX, typos corrected, references adde

    De Sitter solutions in N=4 matter coupled supergravity

    Get PDF
    We investigate the scalar potential of gauged N=4 supergravity with matter. The extremum in the SU(1,1)/U(1) scalars is obtained for an arbitrary number of matter multiplets. The constraints on the matter scalars are solved in terms of an explicit parametrisation of an SO(6,6+n) element. For the case of six matter multiplets we discuss both compact and noncompact gauge groups. In an example involving noncompact groups and four scalars we find a potential with an absolute minimum and a positive cosmological constant.Comment: 14 page

    The Influence of Dependence on Data Network Models of Burstiness

    Get PDF
    The Influence of Dependence on Data Network Models of Burstines

    Data Network Models of Burstiness

    Get PDF
    Data Network Models of Burstines

    Lagrangians with electric and magnetic charges of N=2 supersymmetric gauge theories

    Full text link
    General Lagrangians are constructed for N=2 supersymmetric gauge theories in four space-time dimensions involving gauge groups with (non-abelian) electric and magnetic charges. The charges induce a scalar potential, which, when the charges are regarded as spurionic quantities, is invariant under electric/magnetic duality. The resulting theories are especially relevant for supergravity, but details of the extension to local supersymmetry will be discussed elsewhere. The results include the coupling to hypermultiplets. Without the latter, it is demonstrated how an off-shell representation can be constructed based on vector and tensor supermultiplets.Comment: 34 pages, LaTe

    MODELING OF DEFORMATION SOURCES BASED ON A NON-LINEAR INVERSION APPROACH

    Get PDF
    A new modeling of deformation sources based on a nonlinear inversion approach is proposed. The forward modeling is provided by the semi-analytic deformation model for point sources and finite faults. The parameters of the fault are inverted using a combination of nonlinear optimization algorithms. The misfit function defined for the optimization is based on the L2 norm of the error weighted by the coherence of the considered spatial point. In order to explain our modeling procedure we propose the inversion of a single descending pass differential interferogram of the Bam 2003 earthquake

    Nuclear Energy and its History: Past Consequences, Present Inadequacies and a Perspective for Success

    Get PDF
    An attempt is made to locate nuclear technology within a logical context considering history, risks, societal catastrophes and perspectives: the need is identified for a new direction in the exploitation in order to restore the role in energy production. We depict the situation coming from a marvelous history of discoveries started at the beginning of the XX century; heroes are recalled who made possible something that is inconceivable today: design, construction and production of electricity in a few years; that history was tainted by intentional nuclear explosions, i.e. the original sin that we are now paying. Then, we attempt to show that the societal risk is an inherent part of the civilization. Restoring the public trust (towards nuclear fission technology) by matching nuclear safety with the current technological status and advancers in risk assessment is the key objective. The “independent assessment”, or a principle for the exploitation of nuclear energy already stated in the 50’s of the previous century, shall then re-appear. This is used to erect the signpost for a “dynamic barricade” to further reduce the risk of operation of nuclear reactors and to match the design with current technological capabilities and with the frontiers of the research

    New turbulence modeling for simulation of Direct Contact Condensation in two-phase pressurized thermal shock

    Get PDF
    Injection of Emergency Core Cooling System (ECCS) water into the primary loops of the Pressurized Water Reactors (PWRs) leads to rapid cooling of Reactor Pressure Vessel (RPV) inside wall after Loss Of Coolant Accident (LOCA). This condition, known as Pressurized Thermal Shock (PTS) intensifies the propagation of the RPV structural defects and would be considered as an ageing mechanism. For structural and fracture analysis of RPV wall, thermal-hydraulic analysis of PTS should be accomplished to obtain the steam/water flow characteristics in the downcomer. For this purpose, simulation of steam/water stratified flow (due to density difference) after the injection point should be done by Computational Fluid Dynamics (CFD) methods. In this region, steam condensation over water layer is considered as the only heat source and controlled by turbulence eddy motion near the steam/water interface. Based on Surface Renewal Theory (SRT), Heat Transfer Coefficient (HTC) would be calculated by evaluation of turbulence length and velocity. Therefore, prediction of turbulence characteristics plays a significant role for estimation of interfacial mass transfer and temperature profile. High gradient of velocity and Turbulence Kinetic Energy (TKE), and interfacial mass and momentum transfer at the steam/water interface needs some modifications for application of traditional turbulence models. Implementation of damping function is one of the common solutions to overcome the overestimation of TKE at the steam/water interface. Although, this function improves flow characteristics of smooth stratified flow, investigation of conservation equations and experimental data implies that the other source function is needed when the flow regime changes to wavy flow. In this paper, a new source function of TKE based on variations of turbulence characteristics is proposed for steam/water interface leading to a special boundary condition of turbulence. To investigate the effects of this modification, simulation of air/water and steam/water stratified flow in three different test facilities is performed. The results show that the implementation of the source function of TKE improves the prediction of turbulence characteristics at the interface of isothermal stratified flow. Also condensation rate and temperature gradient of steam/water stratified flow have a better agreement with experimental data
    • …
    corecore