69 research outputs found

    Defining the genetic and molecular basis of inherited eye diseases present in Pakistan

    Get PDF
    Human Mendelian genetics aims to define the link between the phenotypical manifestations of a disease, and the identity of the gene that when mutated causes disease. Rare ocular genetic disorders are typically difficult to manage due to an incomplete understanding of their genetic causes and clinical outcomes. However, in the last few years rapid advancements in high throughput genomic sequencing techniques has paved the way for the discovery of new genes causing inherited diseases, and provided new insights into the breadth of phenotypical manifestations associated with pathogenic variants in genes already known to be linked with ocular disease. The discovery of new disease-associated genes provides important diagnostic benefits for patients, and also aids scientific understanding of how the biological processes within cells work. In turn, this drives the development of new treatments and therapies. Chapter three documents a comprehensive series of genetic studies leading to the discovery of a novel founder mutation in the CLCC1 gene, associated with an autosomal recessive form of retinitis pigmentosa in families from Pakistan, as well as the characterisation of CLCC1 in zebrafish and mouse retina. Moreover, the chapter details extensive molecular studies to discover the functional role of CLCC1 in the cells. This includes the localisation of CLCC1 within the endoplasmic reticulum, the identification of CLCC1 binding partners, and the exploration of a possible role of CLCC1 in endoplasmic reticulum stress and calcium signalling. This section also describes the generation of a CLCC1 knockout cell line using CRISPR-Cas9, to enable future more extensive studies of CLCC1 molecular function. 3 Chapter four of this thesis entails a comprehensive investigation by way of genetic studies, and literature review, of novel and known genetic variants associated with a wide range of inherited retinal dystrophies in families from Pakistani. This data provides the most comprehensive repository of information available for designing molecular diagnostic testing approaches in the region

    Unraveling the CLCC1 interactome: Impact of the Asp25Glu variant and its interaction with SigmaR1 at the Mitochondrial-Associated ER Membrane (MAM).

    Get PDF
    The endoplasmic reticulum (ER) plays an indispensable role in cellular processes, including maintenance of calcium homeostasis, and protein folding, synthesized and processing. Disruptions in these processes leading to ER stress and the accumulation of misfolded proteins can instigate the unfolded protein response (UPR), culminating in either restoration of balanced proteostasis or apoptosis. A key player in this intricate balance is CLCC1, an ER-resident chloride channel, whose essential role extends to retinal development, regulation of ER stress, and UPR. The importance of CLCC1 is further underscored by its interaction with proteins localized to mitochondria-associated endoplasmic reticulum membranes (MAMs), where it participates in UPR induction by MAM proteins. In previous research, we identified a p.(Asp25Glu) pathogenic CLCC1 variant associated with retinitis pigmentosa (RP) (CLCC1 hg38 NC_000001.11; NM_001048210.3, c.75C > A; UniprotKB Q96S66). In attempt to decipher the impact of this variant function, we leveraged liquid chromatography-mass spectrometry (LC-MS) to identify likely CLCC1-interacting proteins. We discovered that the CLCC1 interactome is substantially composed of proteins that localize to ER compartments and that the Asp25Glu variant results in noticeable loss and gain of specific protein interactors. Intriguingly, the analysis suggests that the CLCC1Asp25Glu mutant protein exhibits a propensity for increased interactions with cytoplasmic proteins compared to its wild-type counterpart. To corroborate our LC-MS data, we further scrutinized two novel CLCC1 interactors, Calnexin and SigmaR1, chaperone proteins that localize to the ER and MAMs. Through microscopy, we demonstrate that CLCC1 co-localizes with both proteins, thereby validating our initial findings. Moreover, our results reveal that CLCC1 co-localizes with SigmaR1 not merely at the ER, but also at MAMs. These findings reinforce the notion of CLCC1 interacting with MAM proteins at the ER-mitochondria interface, setting the stage for further exploration into how these interactions impact ER or mitochondria function and lead to retinal degenerative disease when impaired

    Chronic social stress increases nitric oxide-dependent vasorelaxation in normotensive rats

    Get PDF
    The aim of this study was to examine oxidative load and endothelium-dependent vasorelaxation in the serotonin pre-constricted femoral artery (FA) of Wistar-Kyoto (WKY) rats exposed to chronic social stress produced by crowding in the presence or absence of ascorbic acid (AsA) in working solution. Adult male rats were randomly divided into control (living space: 480 cm2/rat) or stressed (living space: 200 cm2/rat) groups for 8 weeks. Blood pressure and heart rate, determined using tail-cuff plethysmography, were not influenced by stress vs. control. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured in the left ventricle and liver (for assessment of oxidative load) and were found unchanged by chronic crowding. The nitric oxide (NO)-dependent component of endothelium-dependent relaxation was investigated in the FA using a wire myograph. In both the presence and absence of AsA, acetylcholine-induced relaxation of the FA of stressed rats significantly exceeded that of the controls, which was associated with an increase of the NO-dependent component. In conclusion, the data showed that chronic crowding did not produce oxidative stress in the organs investigated and indicate that elevation of NO production during chronic stress is an important way of adaptation, which may prevent normotensive rats from the development of stress-induced hypertension

    Dose finding and O6-alkylguanine-DNA alkyltransferase study of cisplatin combined with temozolomide in paediatric solid malignancies

    Get PDF
    Cisplatin may have additive activity with temozolomide due to ablation of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (MGMT). This phase I/II study determined recommended combination doses using the Continual Reassessment Method, toxicities and antitumour activity in paediatric patients, and evaluated MGMT in peripheral blood mononuclear cells (PBMCs) in order to correlate with haematological toxicity. In total, 39 patients with refractory or recurrent solid tumours (median age ∼13 years; 14 pretreated with high-dose chemotherapy, craniospinal irradiation, or having bone marrow involvement) were treated with cisplatin, followed the next day by oral temozolomide for 5 days every 4 weeks at dose levels 80 mg m−2/150 mg m−2 day−1, 80/200, and 100/200, respectively. A total of 38 patients receiving 113 cycles (median 2, range 1–7) were evaluable for toxicity. Dose-limiting toxicity was haematological in all but one case. Treatment-related toxicities were thrombocytopenia, neutropenia, nausea-vomiting, asthenia. Hearing loss was experienced in five patients with prior irradiation to the brain stem or posterior fossa. Partial responses were observed in two malignant glioma, one brain stem glioma, and two neuroblastoma. Median MGMT activity in PBMCs decreased after 5 days of temozolomide treatment: low MGMT activity correlated with increased severity of thrombocytopenia. Cisplatin–temozolomide combinations are well tolerated without additional toxicity to single-agent treatments; the recommended phase II dosage is 80 mg m−2 cisplatin and 150 mg m−2 × 5 temozolomide in heavily treated, and 200 mg m−2 × 5 temozolomide in less-heavily pretreated children

    A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer

    Get PDF
    To evaluate the tumour response to lomeguatrib and temozolomide (TMZ) administered for 5 consecutive days every 4 weeks in patients with metastatic colorectal carcinoma. Patients with stage IV metastatic colorectal carcinoma received lomeguatrib (40 mg) and TMZ (50–200 mg m−2) orally for 5 consecutive days every 4 weeks. Response was determined every two cycles. Pharmacokinetics of lomeguatrib and TMZ as well as their pharmacodynamic effects in peripheral blood mononuclear cells (PBMC) were determined. Nineteen patients received 49 cycles of treatments. Despite consistent depletion of O6-methylguanine-DNA methyltransferase in PBMC, none of the patients responded to treatment. Three patients had stable disease, one for the duration of the study, and no fall in carcinoembryonic antigen was observed in any patient. Median time to progression was 50 days. The commonest adverse effects were gastrointestinal and haematological and these were comparable to those of TMZ when given alone. This combination of lomeguatrib and TMZ is not efficacious in metastatic colorectal cancer. If further studies are to be performed, emerging data suggest that higher daily doses of lomeguatrib and a dosing period beyond that of TMZ should be evaluated

    Cancer cell adaptation to chemotherapy

    Get PDF
    BACKGROUND: Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. METHODS: Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. RESULTS: In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIα (TOPOIIα). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIα in 6/7 colorectal tumors and 8/10 ovarian tumors. CONCLUSION: This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation to chemotherapy may explain why prediction of resistance mechanisms is difficult on the basis of tumor type alone or individual markers, and suggests that more complex predictive methods are required to improve the response rates to chemotherapy

    Mutation in the intracellular chloride channel CLCC1 associated with autosomal recessive retinitis pigmentosa

    Get PDF
    We identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells

    Mutation in the intracellular chloride channel CLCC1 associated with autosomal recessive retinitis pigmentosa

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: Exome and genome .vcf files and SNP array data are available from Dryad Digital Repository: https://doi.org/10.5061/dryad.3vv31qqWe identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells

    QUANTITATIVE DISTRIBUTION PATTERNS AND BIOMAGNETOSTRATIGRAPHY OF MIDDLE AND LATE MIOCENE CALCAREOUS NANNOFOSSILS FROM EQUATORIAL INDIAN AND PACIFIC OCEANS (LEGS 115, 130 AND 138).

    No full text
    Selected calcareous nannofossils were investigated by means of quantitative methods in middle and upper Miocene sediments from the tropical Indian Ocean (ODP Leg 115) and equatorial Pacific Ocean (DSDPLeg 85, ODP Legs 130 and 138). Our goal was to test the reliability of the classic biohorizons used in the standard zonations of Martini (1971) and Bukry (1973) and, possibly, to improve biostratigraphic resolution in the Miocene. In a time interval of about 8 m.y., from the last occurrence (LO) of S. heteromorphus ( 13.6 Ma) to the LO of D. quinqueramus ( 5.5 Ma), a total 37 events were investigated, using both the conventional and some additional markers proposed in the literature. At least 17 of these events proved to be distinct biostratigraphic correlation lines between the two considered areas. This integrated biostratigraphic framework increases the biostratigraphic resolution in the middle-upper Miocene interval (of the order of about 0.5 m.y). All the investigated events were tied to the geomagnetic polarity time scale (GPTS) and compared to biomagnetostratigraphy from mid-latitude North Atlantic Site 94-608 (Olafsson, 1991; Gartner, 1992), thus obtaining further information about the biostratigraphic and biochronologic reliability of the investigated events and a significant improvement of the available nannofossil biomagnetostratigraphic model for the middle and late Miocene
    • …
    corecore