588 research outputs found
Magnetic Monopoles in Field Theory and Cosmology
The existence of magnetic monopoles is predicted by many theories of particle
physics beyond the Standard Model. However, in spite of extensive searches,
there is no experimental or observational sign of them. I review the role of
magnetic monopoles in quantum field theory and discuss their implications for
particle physics and cosmology. I also highlight their differences and
similarities with monopoles found in frustrated magnetic systems, and discuss
how experiments carried out in these systems could help us understand the
physics of fundamental monopoles.Comment: 15 pages, no figures. Based on a talk given at the discussion meeting
"Emergent magnetic monopoles in frustrated magnetic systems" at the Kavli
Royal Society International Centre, 17-18 October 2011. To be published in
Philosophical Transactions of the Royal Society
In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice.
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice.
DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery.
SETTINGS: Mouse sleep-recording facility.
PARTICIPANTS: Per2::Luciferase knock-in mice.
INTERVENTIONS: N/A.
MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls.
CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health
Electronic structure and bond competition in the polar magnet PbVO
Density functional electronic structure studies of tetragonal PbVO are
reported. The results show a an important role for both Pb 6 - O 2 and V
- O bonding, with an interplay between these. This is discussed in
relation to the possibility of obtaining magnetoelectric behavior.Comment: 5 page
Fractional Equations of Curie-von Schweidler and Gauss Laws
The dielectric susceptibility of most materials follows a fractional
power-law frequency dependence that is called the "universal" response. We
prove that in the time domain this dependence gives differential equations with
derivatives and integrals of noninteger order. We obtain equations that
describe "universal" Curie-von Schweidler and Gauss laws for such dielectric
materials. These laws are presented by fractional differential equations such
that the electromagnetic fields in the materials demonstrate "universal"
fractional damping. The suggested fractional equations are common (universal)
to a wide class of materials, regardless of the type of physical structure,
chemical composition or of the nature of the polarization.Comment: 11 pages, LaTe
Phenomenological approach to the critical dynamics of the QCD phase transition revisited
The phenomenological dynamics of the QCD critical phenomena is revisited.
Recently, Son and Stephanov claimed that the dynamical universality class of
the QCD phase transition belongs to model H. In their discussion, they employed
a time-dependent Ginzburg-Landau equation for the net baryon number density,
which is a conserved quantity. We derive the Langevin equation for the net
baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they
discussed the mode coupling induced through the {\it irreversible} current.
Here, we show the {\it reversible} coupling can play a dominant role for
describing the QCD critical dynamics and that the dynamical universality class
does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in
J.Phys.
On the formation/dissolution of equilibrium droplets
We consider liquid-vapor systems in finite volume at parameter
values corresponding to phase coexistence and study droplet formation due to a
fixed excess of particles above the ambient gas density. We identify
a dimensionless parameter and a
\textrm{universal} value \Deltac=\Deltac(d), and show that a droplet of the
dense phase occurs whenever \Delta>\Deltac, while, for \Delta<\Deltac, the
excess is entirely absorbed into the gaseous background. When the droplet first
forms, it comprises a non-trivial, \textrm{universal} fraction of excess
particles. Similar reasoning applies to generic two-phase systems at phase
coexistence including solid/gas--where the ``droplet'' is crystalline--and
polymorphic systems. A sketch of a rigorous proof for the 2D Ising lattice gas
is presented; generalizations are discussed heuristically.Comment: An announcement of a forthcoming rigorous work on the 2D Ising model;
to appear in Europhys. Let
Thermodynamic basis of the concept of "recombination resistances"
The concept of "recombination resistance" introduced by Shockley and Read
(Phys. Rev. 87, 835 (1952)) is discussed within the framework of the
thermodynamics of irreversible processes ruled by the principle of the minimum
rate of entropy production. It is shown that the affinities of recombination
processes represent "voltages" in a thermodynamic Ohm-like law where the net
rates of recombinations represent the "currents". The quantities thus found
allow for the definition of the "dissipated power" which is to be related to
the rate of entropy production of the recombination processes dealt with.Comment: Submitted to Phys. Rev.
Spin current and magneto-electric effect in non-collinear magnets
A new microscopic mechanism of the magneto-electric (ME) effect based on the
spin supercurrent is theoretically presented for non-collinear magnets. The
close analogy between the superconductors (charge current) and magnets (spin
current) is drawn to derive the distribution of the spin supercurrent and the
resultant electric polarization. Application to the spiral spin structure is
discussed.Comment: 5 pages, 2 figure
The Free Will Theorem
On the basis of three physical axioms, we prove that if the choice of a
particular type of spin 1 experiment is not a function of the information
accessible to the experimenters, then its outcome is equally not a function of
the information accessible to the particles. We show that this result is
robust, and deduce that neither hidden variable theories nor mechanisms of the
GRW type for wave function collapse can be made relativistic. We also establish
the consistency of our axioms and discuss the philosophical implications.Comment: 31 pages, 6figure
Dissipation Enhanced Asymmetric Transport in Quantum Ratchets
Quantum mechanical motion of a particle in a periodic asymmetric potential is
studied theoretically at zero temperature. It is shown based on semi-classical
approximation that the tunneling probability from one local minimum to the next
becomes asymmetric in the presence of weak oscillating field, even though there
is no macroscopic field gradient in average. Dissipation enhances this
asymmetry, and leads to a steady unidirectional current, resulting in a quantum
ratchet system.Comment: 12 pages, 2 Figures, submitted to J. Phys. Soc. Jp
- âŠ