2,212 research outputs found
Dynamic acoustic field activated cell separation (DAFACS)
Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools
for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for highthroughput,
label-free, high recovery, cell and particle separation and isolation in regenerative medicine.
Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an
arbitrary size range of cells. We first demonstrate the method for the separation of particles with different
diameters between 6 and 45 ÎŒm and secondly particles of different densities in a heterogeneous medium.
The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and
low damage characteristics make this method of manipulation particularly suited for biological applications.
Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and
biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle
population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to
separate, up to 100%)
Formation of Millisecond Pulsars in Globular Clusters
In this contribution we discuss how neutron stars are produced and retained
in globular clusters, outlining the most important dynamical channels and
evolutionary events that affect thepopulation of mass-transferring binaries
with neutron stars and result in the formation of recycled pulsars. We confirm
the importance of electron-capture supernovae in globular clusters as the major
supplier of retained neutron stars.By comparing the observed millisecond pulsar
population and the results obtained from simulations, we discuss several
constraints on the evolution of mass-transferring systems.In particular, we
find that in our cluster model the following mass-gaining events create
populations of MSPs that do not match the observations (with respect to binary
periods and companion masses or the number of produced systems) and therefore
likely do not lead to NSs spun up to millisecond periods: (i) accretion during
a common envelope event with a NS formed through accretion-induced collapse,
and (ii) mass transfer from a WD donor. By restricting ourselves to the
evolutionary and dynamical paths that most likely lead to neutron star
recycling, we obtain good agreement between our models and the numbers and
characteristics of observed millisecond pulsars in the clusters Terzan 5 and 47
Tuc.Comment: 6 pages, 3 figures, to appear in the proceedings of the 40 Years of
Pulsars conference held at McGill University in August 200
Theory of cooling neutron stars versus observations
We review current state of neutron star cooling theory and discuss the
prospects to constrain the equation of state, neutrino emission and superfluid
properties of neutron star cores by comparing the cooling theory with
observations of thermal radiation from isolated neutron stars.Comment: 9 pages, 4 figures, 3 tables, to appear in the proceedings of "40
Years of Pulsars" held in Montreal, Canada, August 12-17, 2007, eds. C.
Bassa, Z. Wang, A. Cumming, V. Kaspi, AIP, in press (v.2 - minor bibliography
corrections
Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations
We describe work in progress by a collaboration of astronomers and
statisticians developing a suite of Bayesian data analysis tools for extrasolar
planet (exoplanet) detection, planetary orbit estimation, and adaptive
scheduling of observations. Our work addresses analysis of stellar reflex
motion data, where a planet is detected by observing the "wobble" of its host
star as it responds to the gravitational tug of the orbiting planet. Newtonian
mechanics specifies an analytical model for the resulting time series, but it
is strongly nonlinear, yielding complex, multimodal likelihood functions; it is
even more complex when multiple planets are present. The parameter spaces range
in size from few-dimensional to dozens of dimensions, depending on the number
of planets in the system, and the type of motion measured (line-of-sight
velocity, or position on the sky). Since orbits are periodic, Bayesian
generalizations of periodogram methods facilitate the analysis. This relies on
the model being linearly separable, enabling partial analytical
marginalization, reducing the dimension of the parameter space. Subsequent
analysis uses adaptive Markov chain Monte Carlo methods and adaptive importance
sampling to perform the integrals required for both inference (planet detection
and orbit measurement), and information-maximizing sequential design (for
adaptive scheduling of observations). We present an overview of our current
techniques and highlight directions being explored by ongoing research.Comment: 29 pages, 11 figures. An abridged version is accepted for publication
in Statistical Methodology for a special issue on astrostatistics, with
selected (refereed) papers presented at the Astronomical Data Analysis
Conference (ADA VI) held in Monastir, Tunisia, in May 2010. Update corrects
equation (3
SAX J1808.4-3657 in Quiescence: A Keystone for Neutron Star Science
The accreting millisecond pulsar SAX J1808.4-3658 may be a transition object
between accreting X-ray binaries and millisecond radio pulsars. We have
constrained the thermal radiation from its surface through XMM-Newton X-ray
observations, providing strong evidence for neutrino cooling processes from the
neutron star core. We have also undertaken simultaneous X-ray and optical
(Gemini) observations, shedding light on whether the strong heating of the
companion star in quiescence may be due to X-ray irradiation, or to a radio
pulsar turning on when accretion stops.Comment: To appear in the proceedings of "Forty Years of Pulsars: Millisecond
Pulsars, Magnetars and More" held in Montreal, Canada, August 12-17, 2007. 4
page
MOSAIC: A Scalable reconfigurable 2D array system for NDT
This paper documents the development of a scalable 2D array system, or Mosaic that can be targeted at a wide range of NDT applications by way of a reconfigurable tile that can be tessellated to form arrays of any size and shape. Close coupling permits utilization of excitation voltages as low as +/-3.3V with insertion loss of 48dB on reflection from an aluminum back wall at 73mm achieved using 2D arrays without decoding
Hydrostatic Expansion and Spin Changes During Type I X-Ray Bursts
We present calculations of the spin-down of a neutron star atmosphere due to
hydrostatic expansion during a Type I X-ray burst. We show that (i) Cumming and
Bildsten overestimated the spin-down of rigidly-rotating atmospheres by a
factor of two, and (ii) general relativity has a small (5-10%) effect on the
angular momentum conservation law. We rescale our results to different neutron
star masses, rotation rates and equations of state, and present some detailed
rotational profiles. Comparing with recent observations of large frequency
shifts in MXB 1658-298 and 4U 1916-053, we find that the spin-down expected if
the atmosphere rotates rigidly is a factor of two to three less than the
observed values. If differential rotation is allowed to persist, we find that
the upper layers of the atmosphere spin down by an amount comparable to the
observed values; however, there is no compelling reason to expect the observed
spin frequency to be that of only the outermost layers. We conclude that
hydrostatic expansion and angular momentum conservation alone cannot account
for the largest frequency shifts observed during Type I bursts.Comment: Submitted to the Astrophysical Journal (13 pages, including 4
figures
The rp Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star
We calculate the nucleosynthesis during stable nuclear burning on an
accreting neutron star. This is appropriate for weakly magnetic neutron stars
accreting at near-Eddington rates in low mass X-ray binaries, and for most
accreting X-ray pulsars. We show that the nuclear burning proceeds via the
rapid proton capture process (rp process), and makes nuclei far beyond the iron
group. The final mixture of nuclei consists of elements with a range of masses
between approximately A=60 and A=100. The average nuclear mass of the ashes is
set by the extent of helium burning via (alpha,p) reactions, and depends on the
local accretion rate.
Our results imply that the crust of these accreting neutron stars is made
from a complex mixture of heavy nuclei, with important implications for its
thermal, electrical and structural properties. A crustal lattice as impure as
our results suggest will have a conductivity set mostly by impurity scattering,
allowing more rapid Ohmic diffusion of magnetic fields than previously
estimated.Comment: To appear in the Astrophysical Journal (33 pages, LaTeX, including 11
postscript figures
Periodic Thermonuclear X-ray Bursts from GS 1826-24 and the Fuel Composition as a Function of Accretion Rate
We analyze 24 type I X-ray bursts from GS 1826-24 observed by the Rossi X-ray
Timing Explorer between 1997 November and 2002 July. The bursts observed
between 1997-98 were consistent with a stable recurrence time of 5.74 +/- 0.13
hr. The persistent intensity of GS 1826-24 increased by 36% between 1997-2000,
by which time the burst interval had decreased to 4.10 +/- 0.08 hr. In 2002
July the recurrence time was shorter again, at 3.56 +/- 0.03 hr. The bursts
within each epoch had remarkably identical lightcurves over the full approx.
150 s burst duration; both the initial decay timescale from the peak, and the
burst fluence, increased slightly with the rise in persistent flux. The
decrease in the burst recurrence time was proportional to Mdot^(-1.05+/-0.02)
(where Mdot is assumed to be linearly proportional to the X-ray flux), so that
the ratio alpha between the integrated persistent and burst fluxes was
inversely correlated with Mdot. The average value of alpha was 41.7 +/- 1.6.
Both the alpha value, and the long burst durations indicate that the hydrogen
is burning during the burst via the rapid-proton (rp) process. The variation in
alpha with Mdot implies that hydrogen is burning stably between bursts,
requiring solar metallicity (Z ~ 0.02) in the accreted layer. We show that
solar metallicity ignition models naturally reproduce the observed burst
energies, but do not match the observed variations in recurrence time and burst
fluence. Low metallicity models (Z ~ 0.001) reproduce the observed trends in
recurrence time and fluence, but are ruled out by the variation in alpha. We
discuss possible explanations, including extra heating between bursts, or that
the fraction of the neutron star covered by the accreted fuel increases with
Mdot.Comment: 9 pages, 6 figures, accepted by ApJ. Minor revisions following the
referee's repor
Recommended from our members
Mitigation of Moral Hazard and Adverse Selection in Venture Capital Financing: The Influence of the Countryâs Institutional Setting
A venture capitalist (VC) needs to trade off benefits and costs when attempting to mitigate agency problems in their investor-investee relationship. We argue that signals of ventures complement the VCâs capacity to screen and conduct a due diligence during the pre-investment phase, but its attractiveness may diminish in institutional settings supporting greater transparency. Similarly, whereas a VC may opt for contractual covenants to curb potential opportunism by ventures in the post-investment phase, this may only be effective in settings supportive of shareholder rights enforcement. Using an international sample of VC contracts, our study finds broad support for these conjectures. It delineates theoretical and practical implications for how investors can best deploy their capital in different institutional settings whilst nurturing their relationships with entrepreneurs
- âŠ