48 research outputs found

    Large Eddy Simulation of Unstably Stratified Turbulent Flow over Urban-Like Building Arrays

    Get PDF
    Thermal instability induced by solar radiation is the most common condition of urban atmosphere in daytime. Compared to researches under neutral conditions, only a few numerical works studied the unstable urban boundary layer and the effect of buoyancy force is unclear. In this paper, unstably stratified turbulent boundary layer flow over three-dimensional urban-like building arrays with ground heating is simulated. Large eddy simulation is applied to capture main turbulence structures and the effect of buoyancy force on turbulence can be investigated. Lagrangian dynamic subgrid scale model is used for complex flow together with a wall function, taking into account the large pressure gradient near buildings. The numerical model and method are verified with the results measured in wind tunnel experiment. The simulated results satisfy well with the experiment in mean velocity and temperature, as well as turbulent intensities. Mean flow structure inside canopy layer varies with thermal instability, while no large secondary vortex is observed. Turbulent intensities are enhanced, as buoyancy force contributes to the production of turbulent kinetic energy

    Modeling wide-area tropospheric delay corrections for fast PPP ambiguity resolution

    Get PDF
    The performance of precise point positioning (PPP) has been significantly improved thanks to the continuous improvements in satellite orbit, clock, and ambiguity resolution (AR) technologies, but the convergence speed remains a limiting factor in real-time PPP applications. To improve the PPP precision and convergence time, tropospheric delays from a regional network can be modeled to provide precise correction for users. We focus on the precise modeling of zenith wet delay (ZWD) over a wide area with large altitude variations for improving PPP-AR. By exploiting the water vapor exponential vertical decrease, we develop a modified optimal fitting coefficients (MOFC) model based on the traditional optimal fitting coefficients (OFC) model. The proposed MOFC model provides a precision better than 1.5 cm under sparse inter-station distances over the Europe region, with a significant improvement of 70% for high-altitude stations compared to the OFC model. The MOFC model with different densities of reference stations is further evaluated in GPS and Galileo kinematic PPP-AR solutions. Compared to the PPP-AR solutions without tropospheric delay augmentation, the positioning precision of those with 100-km inter-station spacing MOFC and OFC is improved by 25.7% and 17.8%, respectively, and the corresponding time to first fix (TTFF) is improved by 36.9% and 33.0% in the high-altitude areas. On the other hand, the OFC model only slightly improves the TTFF and positioning accuracy when using the 200 km inter-station spacing modeling and even degrades the positioning for high-altitude stations, whereas using the MOFC model, the PPP-AR solutions always improve. Moreover, the positioning precision improvement of MOFC compared with OFC is about 22.1%, 21.7%, and 25.7% for the Galileo-only, GPS-only, and GPS + Galileo PPP-AR solutions, respectively

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    Calibrating receiver-type-dependent wide-lane uncalibrated phase delay biases for PPP integer ambiguity resolution

    No full text
    Wide-lane (WL) uncalibrated phase delay (UPD) is usually derived from Melbourne–Wübbena (MW) linear combination and is a prerequisite in Global Navigation Satellite Systems (GNSS) precise point positioning (PPP) ambiguity resolution (AR). MW is a linear combination of pseudorange and phase, and the accuracy is limited by the larger pseudorange noise which is about one hundred times of the carrier phase noise. However, there exist inconsistent pseudorange biases which may have detrimental effect on the WL UPD estimation, and further degrade user-side ambiguity fixing. Currently, only the large part of pseudorange biases, e.g., the differential code bias (DCB), are available and corrected in PPP-AR, while the receiver-type-dependent biases have not yet been considered. Ignoring such kind of bias, which could be up to 20 cm, will cause the ambiguity fixing failure, or even worse, the incorrect ambiguity fixing. In this study, we demonstrate the receiver-type-dependent WL UPD biases and investigate their temporal and spatial stability, and further propose the method to precisely estimate these biases and apply the corrections to improve the user-side PPP-AR. Using a large data set of 1560 GNSS stations during a 30-day period, we demonstrate that the WL UPD deviations among different types of receivers can reach ± 0.3 cycles. It is also shown that such kind of deviations can be calibrated with a precision of about 0.03 cycles for all Global Positioning System (GPS) satellites. On the user side, ignoring the receiver-dependent UPD deviation can cause significant positioning error up to 10 cm. By correcting the deviations, the positioning performance can be improved by up to 50%, and the fixing rate can also be improved by 10%. This study demonstrates that for the precise and reliable PPP-AR, the receiver-dependent UPD deviations cannot be ignored and have to be handled.China Scholarship Council http://dx.doi.org/10.13039/501100004543Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)ftp://geodesy.noaa.gov/cors/rinex/ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/ftp://ftp.aiub.unibe.ch/CODE

    Quality assessment of resistance spot welding process based on dynamic resistance signal and random forest based

    No full text
    A scheme for online quality monitoring of resistance spot welding (RSW) process is proposed to effectively determine the rate of spot weld quality. In this work, the random forest (RF) classification featuring with dynamic resistance (DR) signals which were collected and processed in the production environment was carried out. The obtained results demonstrated that the constructed RF model based on DR profile features adequately distinguished high-quality welds from the other unacceptable welds such as inadequate sized welds and expulsions. Variable importance evaluation of RF was implemented against the input features. It showed that two DR slopes for nugget nucleation and growth (v 2 , v 3 ) and dynamic resistance (R γ ) in the final half cycle play the most significant roles in achieving more accurate results of classification, while absolute gradient ∇ max is useful in detecting minor expulsion from pull-out failure. In addition, shunting effect in consecutive welds was tentatively investigated via the DR curves, accounting for noticeable declines in the stage I of DR. The results revealed that shunted welds beyond minimum weld spacing do not significantly undermine the accuracy of classification. The implementation of RF based on the combination of welding parameters and DR features improves the accuracy of classification (98.8%) with ntree = 1000 and mtry = 4, as weld current significantly distinguished situations where DR features solely achieve accuracy (93.6%). The incorporation of the RF technique into online monitoring system attains a satisfying RSW quality classification accuracy and reduces the workload on destructive tests.This study was funded by Australian Research Council (Grant No. LP130101001)

    Calibrating receiver-type-dependent wide-lane uncalibrated phase delay biases for PPP integer ambiguity resolution

    No full text
    Wide-lane (WL) uncalibrated phase delay (UPD) is usually derived from Melbourne–Wübbena (MW) linear combination and is a prerequisite in Global Navigation Satellite Systems (GNSS) precise point positioning (PPP) ambiguity resolution (AR). MW is a linear combination of pseudorange and phase, and the accuracy is limited by the larger pseudorange noise which is about one hundred times of the carrier phase noise. However, there exist inconsistent pseudorange biases which may have detrimental effect on the WL UPD estimation, and further degrade user-side ambiguity fixing. Currently, only the large part of pseudorange biases, e.g., the differential code bias (DCB), are available and corrected in PPP-AR, while the receiver-type-dependent biases have not yet been considered. Ignoring such kind of bias, which could be up to 20 cm, will cause the ambiguity fixing failure, or even worse, the incorrect ambiguity fixing. In this study, we demonstrate the receiver-type-dependent WL UPD biases and investigate their temporal and spatial stability, and further propose the method to precisely estimate these biases and apply the corrections to improve the user-side PPP-AR. Using a large data set of 1560 GNSS stations during a 30-day period, we demonstrate that the WL UPD deviations among different types of receivers can reach ± 0.3 cycles. It is also shown that such kind of deviations can be calibrated with a precision of about 0.03 cycles for all Global Positioning System (GPS) satellites. On the user side, ignoring the receiver-dependent UPD deviation can cause significant positioning error up to 10 cm. By correcting the deviations, the positioning performance can be improved by up to 50%, and the fixing rate can also be improved by 10%. This study demonstrates that for the precise and reliable PPP-AR, the receiver-dependent UPD deviations cannot be ignored and have to be handled

    Performance Evaluation and Application Field Analysis of Precise Point Positioning Based on Different Real-Time Augmentation Information

    No full text
    The most commonly used real-time augmentation services in China are the International GNSS Service’s (IGS) real-time service (RTS), PPP-B2b service, and Double-Frequency Multi-Constellation (DFMC) service of the BeiDou Satellite-Based Augmentation System (BDSBAS) service. However, research on the performance evaluation, comparison, and application scope of these three products is still incomplete. This article introduces methods for obtaining real-time augmentation information and real-time orbit and clock offset recovery. Based on real-time orbit and clock offset accuracy, positioning accuracy, and positioning availability, this article systematically evaluates the performance and analyzes the application fields of Centre National d’Études Spatiales (CNES), PPP-B2b, and BDSBAS augmentation information. The results of the evaluation revealed that the radial accuracy of the CNES and PPP-B2b real-time orbit product is consistent, and the Root Mean Square (RMS) is better than 5 cm. The CNES real-time orbit product can achieve centimeter-level accuracy in both along-track and cross-track components, surpassing PPP-B2b’s decimeter-level accuracy. Both services demonstrate consistent accuracy in the real-time clock offset, with PPP-B2b showing similar standard deviations (STDs) of 0.16 ns for different satellites. However, for CNES, the STD of the real-time clock offset varies, with values of 0.10 ns, 0.19 ns, and 0.60 ns, respectively, for GPS, BDS-3 Medium Earth Orbit (MEO), and BDS-3 Inclined Geosynchronous Satellite Orbit (IGSO) satellites. Centimeter-level accuracy is achieved after convergence and positioning availability exceeds 99% for CNES and PPP-B2b services. Therefore, the difference between the two services in application areas depends on the acquisition of augmentation information. However, BDSBAS, which concentrates on code observations, demonstrates inferior performance in real-time orbit, clock offset, positioning accuracy, and positioning availability when compared to the other two services. Its primary application is in the aviation and maritime domains, where there is a greater need for service integrity, continuity, and reliability

    Real-Time Estimation of BDS-3 Satellite Clock Offset with Ambiguity Resolution Using B1C/B2a Signals

    No full text
    The third generation of the BeiDou navigation satellite system (BDS-3) can transmit five-frequency signals. The real-time satellite clock offset of BDS-3 is typically generated utilizing the B1I/B3I combination with the ambiguity-float solutions. By conducting the ambiguity resolution (AR), the reliability of the satellite clock offset can be improved. However, the performance of BDS-3 ambiguity-fixed real-time satellite clock offset with B1C/B2a signals remains unknown and unrevealed. In this contribution, the performance of the BDS-3 ambiguity-fixed satellite clock offset with the new B1C/B2a signals is investigated. One week of observation data from 85 stations was used to perform ambiguity-fixed satellite clock offset estimation. For B1I/B3I and B1C/B2a signals, the wide-lane (WL) uncalibrated phase delay (UPD) on the satellite end is fairly stable for one day, while the narrow-lane (NL) UPD standard deviation (STD) amounts to 0.122 and 0.081 cycles, respectively. The mean ambiguity fixing rate is 80.7% and 78.0% for these two signal combinations, and the time to first fix (TTFF) for the B1C/B2a signals is remarkably shorter than that of the B1I/B3I signals. The STDs of the ambiguity-float and -fixed satellite clock offsets are 0.033 and 0.026 ns, respectively, for the B1I/B3I combination, and it is reduced to 0.024 and 0.023 ns for B1C/B2a signals, respectively. Using the estimated UPD and clock offset products, the positioning performance of the kinematic Precise Point Positioning (PPP)-AR results amounts to 1.56, 1.23, and 4.46 cm in the east, north, and up directions for B1I/B3I signals, respectively. It is improved to 1.36, 1.16, and 4.25 cm using the products estimated with the B1C/B2a signals, with improvements of 12.8%, 5.7%, and 4.7% in three directions, respectively. The experiments showed that the performances of the ambiguity-fixed satellite clock offsets and the PPP-AR results using B1C/B2a signals are better than those of B1I/B3I

    Rapid Estimation of Undifferenced Multi-GNSS Real-Time Satellite Clock Offset Using Partial Observations

    No full text
    Real-time satellite clock offset is a crucial element for real-time precise point positioning (RT-PPP). However, the elapsed time for undifferenced (UD) multi-global navigation satellite system (GNSS) real-time satellite clock offset estimation at each epoch is increased with the growth of stations, which may fall short of real-time application requirements. Therefore, a rapid estimation method for UD multi-GNSS real-time satellite clock offset is proposed to improve the computation efficiency, in which both the dimension of the normal equation (NEQ) and the number of redundant observations are calculated before adjustment; if these two values are larger than the predefined thresholds, the elevation mask is gradually increased until they are less than the predefined thresholds. Then, the clock offset estimation is conducted; this method is called clock offset estimation using partial observations. Totals of 50, 60, 70 and 80 stations are applied to perform experiments. Compared to clock offset estimation using all observations, the elapsed times of clock offset estimation using partial observations can be reduced from 6.80 to 3.10 s, 7.93 to 2.97 s, 12.04 to 3.14 s for 60, 70 and 80 stations, respectively. By using the proposed method, the elapsed time of the clock offset estimation at each epoch is less than 5 s. The estimated clock offset accuracy for GPS, BDS-3, Galileo and GLONASS satellites are better than 0.04, 0.05, 0.03 and 0.16 ns when using the partial observations to estimate clock offset with 50, 60, 70 and 80 stations, respectively. For the multi-GNSS kinematic PPP using the estimated clock offset from 50, 60, 70 and 80 stations with partial observations, the positioning accuracy at 95% confidence level in the east, north and up direction are better than 2.70, 2.20 and 5.60 cm, respectively

    Multi-GNSS Combined Precise Point Positioning Using Additional Observations with Opposite Weight for Real-Time Quality Control

    No full text
    The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component
    corecore