4 research outputs found

    Treatment of chronic plantar fasciopathy with extracorporeal shock waves (review)

    Get PDF
    There is an increasing interest by doctors and patients in extracorporeal shock wave therapy (ESWT) for chronic plantar fasciopathy (PF), particularly in second generation radial extracorporeal shock wave therapy (RSWT). The present review aims at serving this interest by providing a comprehensive overview on physical and medical definitions of shock waves and a detailed assessment of the quality and significance of the randomized clinical trials published on ESWT and RSWT as it is used to treat chronic PF. Both ESWT and RSWT are safe, effective, and technically easy treatments for chronic PF. The main advantages of RSWT over ESWT are the lack of need for any anesthesia during the treatment and the demonstrated long-term treatment success (demonstrated at both 6 and 12 months after the first treatment using RSWT, compared to follow-up intervals of no more than 12 weeks after the first treatment using ESWT). In recent years, a greater understanding of the clinical outcomes in ESWT and RSWT for chronic PF has arisen in relationship not only in the design of studies, but also in procedure, energy level, and shock wave propagation. Either procedure should be considered for patients 18 years of age or older with chronic PF prior to surgical intervention

    Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: a retrospective case series

    Get PDF
    Background: A substantial body of evidence supports the use of focused extracorporeal shock wave therapy (fESWT) in the non-invasive treatment of fracture nonunions. On the other hand, virtually no studies exist on the use of radial extracorporeal shock wave therapy (rESWT) for this indication. Methods: We retrospectively analyzed 22 patients treated with rESWT for fracture nonunions of superficial bones that failed to heal despite initial surgical fixation in most cases. Radial extracorporeal shock wave therapy was applied without anesthesia in three rESWT sessions on average, with one rESWT session per week and 3000 radial extracorporeal shock waves at an energy flux density of 0.18 mJ/mm(2) per session. Treatment success was monitored with radiographs and clinical examinations. Results: Six months after rESWT radiographic union was confirmed in 16 out of 22 patients (73%), which is similar to the success rate achieved in comparable studies using fESWT. There were no side effects. The tibia was the most common treatment site (10/22) and 70% of tibia nonunions healed within 6 months after rESWT. Overall, successfully treated patients showed a mean time interval of 8.8 +/- 0.8 (mean +/- standard error of the mean) months between initial fracture and commencement of rESWT whereas in unsuccessfully treated patients the mean interval was 26.0 +/- 10.1 months (p < 0.05). In unsuccessful tibia cases, the mean interval was 43.3 +/- 13.9 months. Conclusions: Radial extracorporeal shock wave therapy appears to be an effective and safe alternative in the management of fracture nonunions of superficial bones if diagnosed early and no fESWT device is available. The promising preliminary results of the present case series should encourage the implementation of randomized controlled trials for the early use of rESWT in fracture nonunions

    Radial Shock Wave Devices Generate Cavitation

    Get PDF
    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast;Electro Medical Systems, Nyon, Switzerland;D-Actor 200;Storz Medical, Tagerwillen, Switzerland) and a vibrating massage device (Vibracare;G5/General Physiotherapy, Inc.,Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. Results FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. Conclusions The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices
    corecore