381 research outputs found

    Response of Selected Exotic and Indigenous Wheat Varieties to Changes in Day Length and Temperature

    Get PDF
    Agronomy (Field Crops

    Correlation-Strength Driven Anderson Metal-Insulator Transition

    Get PDF
    The possibility of driving an Anderson metal-insulator transition in the presence of scale-free disorder by changing the correlation exponent is numerically investigated. We calculate the localization length for quasi-one-dimensional systems at fixed energy and fixed disorder strength using a standard transfer matrix method. From a finite-size scaling analysis we extract the critical correlation exponent and the critical exponent characterizing the phase transition.Comment: 3 pages; 2 figure

    Coherent manipulation of charge qubits in double quantum dots

    Full text link
    The coherent time evolution of electrons in double quantum dots induced by fast bias-voltage switches is studied theoretically. As it was shown experimentally, such driven double quantum dots are potential devices for controlled manipulation of charge qubits. By numerically solving a quantum master equation we obtain the energy- and time-resolved electron transfer through the device which resembles the measured data. The observed oscillations are found to depend on the level offset of the two dots during the manipulation and, most surprisingly, also the on initialization stage. By means of an analytical expression, obtained from a large-bias model, we can understand the prominent features of these oscillations seen in both the experimental data and the numerical results. These findings strengthen the common interpretation in terms of a coherent transfer of electrons between the dots.Comment: 18 pages, 4 figure

    Dynamics of a nano-scale rotor driven by single-electron tunneling

    Full text link
    We investigate theoretically the dynamics and the charge transport properties of a rod-shaped nano-scale rotor, which is driven by a similar mechanism as the nanomechanical single-electron transistor (NEMSET). We show that a static electric potential gradient can lead to self-excitation of oscillatory or continuous rotational motion. The relevant parameters of the device are identified and the dependence of the dynamics on these parameters is studied. We further discuss how the dynamics is related to the measured current through the device. Notably, in the oscillatory regime, we find a negative differential conductance. The current-voltage characteristics can be used to infer details of the surrounding environment which is responsible for damping

    Comment on the paper I. M. Suslov: Finite Size Scaling from the Self Consistent Theory of Localization

    Full text link
    In the recent paper [I.M.Suslov, JETP {\bf 114} (2012) 107] a new scaling theory of electron localization was proposed. We show that numerical data for the quasi-one dimensional Anderson model do not support predictions of this theory.Comment: Comment on the paper arXiv 1104.043

    Spatial transcriptomics identifies spatially dysregulated expression of <i>GRM3</i> and <i>USP47</i> in amyotrophic lateral sclerosis

    Get PDF
    Research Funding Medical Research Council. Grant Number: MR/L016400/1 Biogen Academy of Medical Sciences. Grant Number: 210JMG 3102 R45620 MND Scotland Engineering and Physical Sciences Research CouncilPeer reviewedPublisher PD

    Cross-Over between universality classes in a magnetically disordered metallic wire

    Full text link
    In this article we present numerical results of conduction in a disordered quasi-1D wire in the possible presence of magnetic impurities. Our analysis leads us to the study of universal properties in different conduction regimes such as the localized and metallic ones. In particular, we analyse the cross-over between universality classes occurring when the strength of magnetic disorder is increased. For this purpose, we use a numerical Landauer approach, and derive the scattering matrix of the wire from electron's Green's function.Comment: Final version, accepted for publication in New Journ. of Physics, 27 pages, 28 figures. Replaces the earlier shorter preprint arXiv:0910.427

    Mutational spectra of aflatoxin B

    Get PDF
    Aflatoxin B₁ (AFB₁) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB₁-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB₁ using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB₁ exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (CGC; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB₁ exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB₁, and, as such, is an early detection metric for AFB₁-induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis.National Institutes of Health (U.S.) (Grant R01-ES016313)National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant T32-ES007020)National Institutes of Health (U.S.) (Grant R01-CA080024

    The Role of Power-Law Correlated Disorder in the Anderson Metal-Insulator Transition

    Full text link
    We study the influence of scale-free correlated disorder on the metal-insulator transition in the Anderson model of localization. We use standard transfer matrix calculations and perform finite-size scaling of the largest inverse Lyapunov exponent to obtain the localization length for respective 3D tight-binding systems. The density of states is obtained from the full spectrum of eigenenergies of the Anderson Hamiltonian. We discuss the phase diagram of the metal-insulator transition and the influence of the correlated disorder on the critical exponents.Comment: 6 pages, 3 figure

    Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles

    Get PDF
    Anomalous lattice dynamics and thermal behavior have been observed for ligand-free, size-, and shape-selected Pt nanoparticles (NPs) supported on nanocrystalline gamma-Al(2)O(3) via extended x-ray absorption fine-structure spectroscopy. Several major differences were observed for the NPs with respect to bulk Pt: (i) a contraction in the interatomic distances, (ii) a reduction in the dynamic (temperature-dependent) bond-length disorder and associated increase in the Debye temperature (theta(D)), and (iii) an overall decrease in the bond-length expansion coefficient coupled with NP stiffening. The increase in the Debye temperature is explained in terms of the NP size, shape, support interactions, and adsorbate effects. For a similar average size, we observe a striking correlation between the shapes of the NPs and their theta(D) values
    • 

    corecore