940 research outputs found

    Cholesterol and Phospholipid Modulation of BK[subscript Ca] Channel Activity and Ethanol Sensitivity: a dissertation

    Get PDF
    The large conductance Ca++-activated K+ channel (BKCa) regulates neuronal excitability through the efflux of K+, in response to membrane depolarization and increases in intracellular Ca++. The activity of the BKCa channel is increased by acute exposure to ethanol (EtOH), which is thought to underlie, in part, the influence of the drug on peptide hormone release from neurohypophysial nerve terminals (Dopico et al., 1996, 1998). Moreover, chronic EtOH exposure attenuates acute drug action on hormone release, and reduces the sensitivity of BKCa channels to acute EtOH exposure (Knott et al., 2002). The factors regulating EtOH action on BKCa channels are not well understood. Several lines of evidence suggest, however, that the lipid composition of the plasma membrane may influence channel sensitivity to the drug. The plasma membrane is highly complex in its organization (Welti and Glaser, 1994; Brown and London, 1998). There is a growing body of literature indicating that the local lipid composition of the membrane can influence the function of ion channels, including BKCa (Chang et al., 1995a, b; Moczydlowski et al., 1985; Park et al., 2003; Turnheim et al., 1999). Interestingly, chronic exposure to EtOH in animal models results in alterations in the composition of synaptic plasma membranes, including changes in the amount and distribution of membrane cholesterol (CHS) (Chin et al., 1978; Chin et al., 1979; Wood et al., 1989). The significance of these alterations is unclear. Here, we set out to determine the ability of membrane lipids to modulate BKCa channel activity and EtOH sensitivity. To address this, we implement the planar lipid bilayer technique, allowing control of both the protein and lipid components of the membrane. Native BKCa channels retain EtOH sensitivity in this reductionist preparation (Chu et al., 1998), and we extend the study here to examine cloned human brain (hslo) BKCachannels. We show here that hslo channels maintain their characteristic large conductance, voltage and Ca++-dependent gating, and sensitivity to 50 mM EtOH in bilayers cast from a 3:1 mixture of 1-pamiltoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-pamiltoyl-2-oleoyl-phosphatidylserine (POPS). The addition of CHS to the bilayer decreases both the basal activity and EtOH sensitivity of the channels, in a concentration-dependent manner. This lends support to the notion that alterations in plasma membrane CHS levels following chronic EtOH exposure may reflect adaptations to the acute actions of the drug on ion channels. Furthermore, the EtOH sensitivity and CHS modulation of these reconstituted hslo channels are greatly reduced in the absence of negatively charged POPS in the bilayer (pure POPE). Based on these findings, we look to gain mechanistic insight into the lipid headgroup and acyl chain properties that may regulate BKCa channel modulation by EtOH and CHS. When POPS is replaced with the uncharged lipid 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), the hslo response to EtOH and CHS is restored, suggesting that the loss of negative surface charge or PS headgroup structure itself cannot explain the lack of channel modulation by these agents in POPE bilayers. Moreover, increases in the proportion of unsaturated acyl chains in the bilayer cannot significantly influence the hslo response to EtOH. The loss of EtOH sensitivity in pure POPE and CHS-containing bilayers may, therefore, reflect the propensity of POPE and CHS to form nonlamellar (nonbilayer) structures. Regarding the basal activity of the channel, we demonstrate that decreases in negative surface charge, increases in the proportion of unsaturated acyl chains, and increases in the complexity of head group interactions can all influence the steady-state activity of reconstituted hslochannels, relative to control POPE/POPS (3:1) bilayers. Overall, these data further suggest the ability of the local lipid environment to regulate the basal function and EtOH sensitivity of an ion channel protein. Parts of this dissertation have appeared in separate publications: Treistman, S.N., O\u27Connell, R.J., and Crowley, J.J. (2002). Artificial Bilayer Techniques in Ion Channel Study. In Methods in Alcohol-Related Neuroscience Research, D. Lovinger and Y. Liu, eds. (Boca Raton, Florida: CRC Press) Crowley, J.J., Treistman, S.N., and Dopico, A.M. (2003). Cholesterol antagonizes ethanol potentiation of human BKCA channels in binary phospholipid bilayers. Mol. Pharma. 64(2):364-372

    Montana\u27s canon for post-secondary literature foundation courses

    Get PDF

    HB 452 - Domestic Terrorism

    Get PDF
    The Act creates and defines the offense of domestic terrorism in Georgia. It establishes that a person must have the intent to intimidate the public or coerce the government while causing significant harm in order to be liable for domestic terrorism. The Act also provides for training law enforcement to identify and combat domestic terrorism, to share the information with the Georgia Information Sharing and Analysis Center, and for the Georgia Information Sharing and Analysis Center to share that information with the United States Department of Homeland Security

    Highly-functionalised difluorinated cyclohexane polyols via the Diels–Alder reaction : regiochemical control via the phenylsulfonyl group

    Get PDF
    A difluorinated dienophile underwent cycloaddition reactions with a range of furans to afford cycloadducts whichcould be processed regio- and stereoselectively via episulfonium ions, generated by the reaction between their alkenyl groups and phenylsulfenyl chloride. The oxabicyclic products were oxidised to the phenylsulfonyl level and ring opened via E1CB or reductive desulfonative pathways to afford, ultimately, difluorinated cyclohexene or cyclohexane polyols

    Glacial cycles drive variations in the production of oceanic crust

    Full text link
    Glacial cycles redistribute water between oceans and continents causing pressure changes in the upper mantle, with consequences for melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows significant spectral energy near the Milankovitch periods of 23, 41, and 100 ky, consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor.Comment: 30 pages, 6 figures (including supplementary information). Resubmitted to Science on 12 December 201

    Dynamics of Fast and Slow Inhibition from Cerebellar Golgi Cells Allow Flexible Control of Synaptic Integration

    Get PDF
    SummaryThroughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron class modifies activity in its targets. We find that GABAA-mediated transmission at unitary Golgi cell → granule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high-frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber → granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing

    Randomization and Statistical Power: Paramount in Trial Reproducibility (Even for Rare Cancers)

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139967/1/onco1129.pd

    Evaluation of Multiple Models to Distinguish Closely Related Forms of Disease Using DNA Microarray Data: an Application to Multiple Myeloma

    Get PDF
    Motivation: Standard laboratory classification of the plasma cell dyscrasia monoclonal gammopathy of undetermined significance (MGUS) and the overt plasma cell neoplasm multiple myeloma (MM) is quite accurate, yet, for the most part, biologically uninformative. Most, if not all, cancers are caused by inherited or acquired genetic mutations that manifest themselves in altered gene expression patterns in the clonally related cancer cells. Microarray technology allows for qualitative and quantitative measurements of the expression levels of thousands of genes simultaneously, and it has now been used both to classify cancers that are morphologically indistinguishable and to predict response to therapy. It is anticipated that this information can also be used to develop molecular diagnostic models and to provide insight into mechanisms of disease progression, e.g., transition from healthy to benign hyperplasia or conversion of a benign hyperplasia to overt malignancy. However, standard data analysis techniques are not trivial to employ on these large data sets. Methodology designed to handle large data sets (or modified to do so) is needed to access the vital information contained in the genetic samples, which in turn can be used to develop more robust and accurate methods of clinical diagnostics and prognostics.Results: Here we report on the application of a panel of statistical and data mining methodologies to classify groups of samples based on expression of 12,000 genes derived from a high density oligonucleotide microarray analysis of highly purified plasma cells from newly diagnosed MM, MGUS, and normal healthy donors. The three groups of samples are each tested against each other. The methods are found to be similar in their ability to predict group membership; all do quite well at predicting MM vs. normal and MGUS vs. normal. However, no method appears to be able to distinguish explicitly the genetic mechanisms between MM and MGUS. We believe this might be due to the lack of genetic differences between these two conditions, and may not be due to the failure of the models. We report the prediction errors for each of the models and each of the methods. Additionally, we report ROC curves for the results on group prediction.Availability: Logistic regression: standard software, available, for example in SAS. Decision trees and boosted trees: C5.0 from www.rulequest.com. SVM: SVM-light is publicly available from svmlight.joachims.org. Naïve Bayes and ensemble of voters are publicly available from www.biostat.wisc.edu/~mwaddell/eov.html. Nearest Shrunken Centroids is publicly available from http://www-stat.stanford.edu/~tibs/PAM

    Timing of Deformation along the Iron Springs Thrust, Southern Sevier Fold-and-Thrust Belt, Utah: Evidence for an Extensive Thrusting Event in the mid-Cretaceous

    Get PDF
    The temporal and spatial distribution of strain associated with the Sevier orogeny in western North America is significantly different in the southern end of the belt, at the latitude of Las Vegas, Nevada, than farther to the north at the latitude of Salt Lake City, Utah. Reasons for these differences have been speculative as a lack of temporal constraints on thrusting in the intervening region hindered along-strike correlation across the belt. We determined a crystallization age of 100.18 ± 0.04 Ma for zircons extracted from a recently recognized dacite lapilli ash-fall tuff near the base of the synorogenic Iron Springs Formation. We propose the name “Three Peaks Tuff Member” for this unit, and identify a type stratigraphic section on the western flank of the “Three Peaks,” a topographic landmark in Iron County, Utah. Field relationships and this age constrain movement on the Iron Springs thrust and the end of the sub-Cretaceous unconformity in the critical intervening area to latest Albian/earliest Cenomanian. Movement on the Iron Springs thrust was synchronous with movement on multiple Sevier thrusts at ~100 Ma, indicating that the mid-Cretaceous was a period of extensive thrust-fault movement. This mid-Cretaceous thrusting event coincided with a period of global plate reorganization and increased convergence, and hence an increased subduction rate for the Farallon Plate beneath North America. The accelerated subduction contributed to a Cordilleran arc flare-up event and steepening of the orogenic wedge, which triggered widespread thrusting across the retroarc Sevier deformation belts. Additionally, based on temporal constraints and the strong spatial connection of mid-Cretaceous thrusts to lineaments interpreted as pre-orogenic transform faults, we suggest that temporal and spatial variations along the strike of the orogenic belt reflect tectonic inheritance of basement structures associated with the edge of the rifted Precambrian craton

    Surfboard Paddling Technique and Neuromechanical Control: A Narrative Review

    Get PDF
    Surfboard paddling is an essential activity when surfing. Research investigating surfboard paddling, especially as it pertains to neuromechanical control and techniques used, is limited. Previous research made use of swim ergometers to examine surfboard paddling demands. The validity of using swim ergometers in surfboard paddling research and training deserves further analysis. To establish ecologically valid findings, researchers have begun to use swim flumes and still-water paddling environments to investigate paddling efficiency and technique. This emerging body of research has reported that muscle activation patterns, intensities, and timings differ as surfers move through different paddle stroke phases. A deeper understanding of paddling\u27s neuromechanical control may help enhance the understanding of how to improve paddle performance and perhaps reduce injury risk. Therefore, the purpose of this review was to identify the gaps in the existing literature to help identify future research directions in relation to surfboard paddling techniques and neuromechanical control
    corecore